Problem 9.12

Problem 9.12#

Fundamentals of Solar Cells and Photovoltaic Systems Engineering

Solutions Manual - Chapter 9

Problem 9.12

Use pvlib and the Typical Meteorological Year (TMY) to calculate the reference yield \(Y_R\), array yield \(Y_A\), and final yield \(Y_F\), for a small rooftop PV system installed in Cairo, Egypt (31.233\(^{\circ}\)N, 30.033\(^{\circ}\)E). The system includes one PV panel LG290N1C (oriented toward the south with inclination angle \(\beta=20^{\circ}\)) and one microinverter ABB-MICRO-0.25. For the cell temperature estimation, assume that the PV module is glass-glass and it is mounted on an open rack.

In addition, estimate the capture losses \(L_C\), the systems losses \(L_S\) and the performance ratio \(PR\).

We will use the packages pvlib, pandas and matplotlib.pyplot to plot the results. We will also use the package pytz to determine the time zone of Egypt.

import pvlib
import pandas as pd
import matplotlib.pyplot as plt
import pytz

We start by defining the location, date, and time. We also define the orientation and tilt angles.

# Cairo, Egypt
lat, lon =  31.233, 30.033
altitude = 23

tz = pytz.country_timezones('EG')[0] # timezone corresponding to country 'EG' (Egypt)

# location
location = pvlib.location.Location(lat, lon, tz=tz)

orientation = 180 # pvlib sets orientation origin at North -> South=180
tilt = 20

We retrieve typical meteorological year (TMY) data from PVGIS.

tmy, _, _, _ = pvlib.iotools.get_pvgis_tmy(latitude=lat, longitude=lon, map_variables=True)

tmy.index = tmy.index.tz_convert(tz) # use local time

We retrieve the PV modules and inverter specifications from the database at the NREL SAM (System Advisory Monitoring).

sandia_modules = pvlib.pvsystem.retrieve_sam('SandiaMod') 
module = sandia_modules['LG_LG290N1C_G3__2013_'] # module LG290N1C

# Alternatively, the CEC modules database can be retrived, but this does not include all the parameters needed to use 
# the SAMP (Sandia PV Array Peformance) Model
# sam_modules = pvlib.pvsystem.retrieve_sam('CECMod') 
# module = sam_modules['LG_Electronics_Inc__LG345N1W_A5'] # module LG345N1W-A5

sapm_inverters = pvlib.pvsystem.retrieve_sam('cecinverter')
inverter = sapm_inverters['ABB__MICRO_0_25_I_OUTD_US_208__208V_'] # inverter ABB-MICRO-0.25

We can check the different modules and inverters included in the SAM database, as well as their properties.

sandia_modules
Advent_Solar_AS160___2006_ Advent_Solar_Ventura_210___2008_ Advent_Solar_Ventura_215___2009_ Aleo_S03_160__2007__E__ Aleo_S03_165__2007__E__ Aleo_S16_165__2007__E__ Aleo_S16_170__2007__E__ Aleo_S16_175__2007__E__ Aleo_S16_180__2007__E__ Aleo_S16_185__2007__E__ ... Panasonic_VBHN235SA06B__2013_ Trina_TSM_240PA05__2013_ Hanwha_HSL60P6_PA_4_250T__2013_ Suniva_OPT300_72_4_100__2013_ Canadian_Solar_CS6X_300M__2013_ LG_LG290N1C_G3__2013_ Sharp_NDQ235F4__2013_ Solar_Frontier_SF_160S__2013_ SolarWorld_Sunmodule_250_Poly__2013_ Silevo_Triex_U300_Black__2014_
Vintage 2006 2008 2009 2007 (E) 2007 (E) 2007 (E) 2007 (E) 2007 (E) 2007 (E) 2007 (E) ... 2013 2013 2013 2013 2013 2013 2013 2013 2013 2014
Area 1.312 1.646 1.646 1.28 1.28 1.378 1.378 1.378 1.378 1.378 ... 1.26 1.63 1.65 1.93 1.91 1.64 1.56 1.22 1.68 1.68
Material mc-Si mc-Si mc-Si c-Si c-Si mc-Si mc-Si mc-Si mc-Si mc-Si ... a-Si / mono-Si mc-Si mc-Si c-Si c-Si c-Si mc-Si CIS mc-Si c-Si
Cells_in_Series 72 60 60 72 72 50 50 50 50 50 ... 72 60 60 72 72 60 60 172 60 96
Parallel_Strings 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1
Isco 5.564 8.34 8.49 5.1 5.2 7.9 7.95 8.1 8.15 8.2 ... 5.8738 8.8449 8.5935 8.5753 8.6388 9.8525 8.6739 2.0259 8.3768 5.771
Voco 42.832 35.31 35.92 43.5 43.6 30.0 30.1 30.2 30.3 30.5 ... 52.0042 36.8926 36.8075 44.2921 43.5918 39.6117 36.8276 112.5048 36.3806 68.5983
Impo 5.028 7.49 7.74 4.55 4.65 7.08 7.23 7.38 7.53 7.67 ... 5.5383 8.2955 8.0822 7.963 8.1359 9.2473 8.1243 1.8356 7.6921 5.383
Vmpo 32.41 27.61 27.92 35.6 35.8 23.3 23.5 23.7 23.9 24.1 ... 43.1204 29.066 29.2011 35.0837 34.9531 31.2921 29.1988 86.6752 28.348 55.4547
Aisc 0.000537 0.00077 0.00082 0.0003 0.0003 0.0008 0.0008 0.0008 0.0008 0.0008 ... 0.0005 0.0004 0.0004 0.0006 0.0005 0.0002 0.0006 0.0001 0.0006 0.0003
Aimp -0.000491 -0.00015 -0.00013 -0.00025 -0.00025 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 ... -0.0001 -0.0003 -0.0003 -0.0002 -0.0001 -0.0004 -0.0002 -0.0003 -0.0001 -0.0003
C0 1.0233 0.937 1.015 0.99 0.99 0.99 0.99 0.99 0.99 0.99 ... 1.0015 1.0116 1.0061 0.999 1.0121 1.0145 1.0049 1.0096 1.0158 0.995
C1 -0.0233 0.063 -0.015 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ... -0.0015 -0.0116 -0.0061 0.001 -0.0121 -0.0145 -0.0049 -0.0096 -0.0158 0.005
Bvoco -0.1703 -0.133 -0.135 -0.152 -0.152 -0.11 -0.11 -0.11 -0.11 -0.11 ... -0.1411 -0.137 -0.1263 -0.155 -0.1532 -0.1205 -0.1279 -0.3044 -0.1393 -0.1913
Mbvoc 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
Bvmpo -0.1731 -0.135 -0.136 -0.158 -0.158 -0.115 -0.115 -0.115 -0.115 -0.115 ... -0.1366 -0.1441 -0.1314 -0.1669 -0.1634 -0.1337 -0.1348 -0.2339 -0.1449 -0.184
Mbvmp 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
N 1.174 1.495 1.373 1.25 1.25 1.35 1.35 1.35 1.35 1.35 ... 1.029 1.2073 1.0686 1.0771 1.0025 1.0925 1.0695 1.2066 1.226 1.345
C2 -0.76444 0.0182 0.0036 -0.15 -0.15 -0.12 -0.12 -0.12 -0.12 -0.12 ... 0.2859 -0.07993 -0.2585 -0.355 -0.171 -0.4647 -0.2718 -0.5426 -0.09677 0.3221
C3 -15.5087 -10.758 -7.2509 -8.96 -8.96 -11.08 -11.08 -11.08 -11.08 -11.08 ... -5.484547 -7.276241 -9.859055 -13.064291 -9.397451 -11.900781 -11.403347 -15.259846 -8.511484 -6.717804
A0 0.9281 0.9067 0.9323 0.938 0.938 0.924 0.924 0.924 0.924 0.924 ... 0.9161 0.9645 0.9428 0.9327 0.9371 0.9731 0.9436 0.9354 0.9288 0.9191
A1 0.06615 0.09573 0.06526 0.05422 0.05422 0.06749 0.06749 0.06749 0.06749 0.06749 ... 0.07968 0.02753 0.0536 0.07283 0.06262 0.02966 0.04765 0.06809 0.07201 0.09988
A2 -0.01384 -0.0266 -0.01567 -0.009903 -0.009903 -0.012549 -0.012549 -0.012549 -0.012549 -0.012549 ... -0.01866 -0.002848 -0.01281 -0.02402 -0.01667 -0.01024 -0.007405 -0.02094 -0.02065 -0.04273
A3 0.001298 0.00343 0.00193 0.00073 0.00073 0.001005 0.001005 0.001005 0.001005 0.001005 ... 0.002278 -0.000144 0.001826 0.003819 0.002168 0.001793 0.000382 0.00293 0.002862 0.00937
A4 -0.000046 -0.000179 -0.000098 -0.000019 -0.000019 -0.000029 -0.000029 -0.000029 -0.000029 -0.000029 ... -0.000112 0.000022 -0.000105 -0.000235 -0.000109 -0.000129 -0.000011 -0.000156 -0.000154 -0.000764
B0 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1
B1 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 -0.002438 ... -0.01053 -0.00261 -0.007861 -0.006801 -0.00789 -0.0154 -0.00464 -0.0152 -0.00308 -0.006498
B2 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 ... 0.001149 0.000328 0.000906 0.000797 0.000866 0.001572 0.000559 0.001598 0.000405 0.000691
B3 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 -0.000012 ... -0.000043 -0.000015 -0.000035 -0.000031 -0.000033 -0.000055 -0.000022 -0.000057 -0.000017 -0.000027
B4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.000001 0.0 0.000001 0.0 0.000001 0.000001 0.0 0.000001 0.0 0.0
B5 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 ... -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
DTC 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 ... 2.03 3.03 2.55 2.58 3.2 3.05 3.27 3.29 3.19 3.13
FD 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1
A -3.35 -3.45 -3.47 -3.56 -3.56 -3.56 -3.56 -3.56 -3.56 -3.56 ... -3.7489 -3.5924 -3.5578 -3.7566 -3.6024 -3.4247 -3.7445 -3.6836 -3.73 -3.6866
B -0.1161 -0.077 -0.087 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 ... -0.1287 -0.1319 -0.1766 -0.156 -0.2106 -0.0951 -0.149 -0.1483 -0.1483 -0.104
C4 0.9974 0.972 0.989 0.995 0.995 0.995 0.995 0.995 0.995 0.995 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
C5 0.0026 0.028 0.012 0.005 0.005 0.005 0.005 0.005 0.005 0.005 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
IXO 5.54 8.25 8.49 5.04 5.14 7.8 7.85 8.0 8.05 8.1 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
IXXO 3.56 5.2 5.45 3.16 3.25 4.92 5.08 5.18 5.39 5.54 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
C6 1.173 1.067 1.137 1.15 1.15 1.15 1.15 1.15 1.15 1.15 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
C7 -0.173 -0.067 -0.137 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Notes Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... Source: Sandia National Laboratories Updated 9... ... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2013. Mo... Source: CFV Solar Test Lab. Tested 2014. Mo...

42 rows × 523 columns

sapm_inverters
ABB__MICRO_0_25_I_OUTD_US_208__208V_ ABB__MICRO_0_25_I_OUTD_US_240__240V_ ABB__MICRO_0_3_I_OUTD_US_208__208V_ ABB__MICRO_0_3_I_OUTD_US_240__240V_ ABB__MICRO_0_3HV_I_OUTD_US_208__208V_ ABB__MICRO_0_3HV_I_OUTD_US_240__240V_ ABB__PVI_10_0_I_OUTD_x_US_208_y__208V_ ABB__PVI_10_0_I_OUTD_x_US_480_y_z__480V_ ABB__PVI_12_0_I_OUTD_x_US_480_y__480V_ ABB__PVI_3_0_OUTD_S_US__208V_ ... Zigor__Sunzet_3_TL_US__240V_ i_Energy__GT260__240V_ iPower__SHO_1_1__120V_ iPower__SHO_2_0__240V_ iPower__SHO_2_5__240V_ iPower__SHO_3_0__240V_ iPower__SHO_3_5__240V_ iPower__SHO_4_6__208V_ iPower__SHO_4_8__240V_ iPower__SHO_5_2__240V_
Vac 208 240 208 240 208 240 208 480 480 208 ... 240 240 120 240 240 240 240 208 240 240
Pso 2.089607 2.240412 1.846506 1.950539 1.769444 1.843781 46.863808 67.790878 62.554672 18.166279 ... 36.033405 2.530101 22.09536 24.465775 42.776474 31.682003 64.774162 54.570091 85.145699 62.486748
Paco 250.0 250.0 300.0 300.0 300.0 300.0 10000.0 10000.0 12000.0 3000.0 ... 3180.0 230.0 1100.0 2000.0 2500.0 3000.0 3500.0 4600.0 4800.0 5200.0
Pdco 259.588593 259.492065 311.66925 311.580872 312.421082 312.004578 10488.306641 10295.979492 12358.804688 3142.30127 ... 3315.654297 245.630447 1194.094849 2161.879639 2632.835693 3205.932617 3641.840332 4797.806641 4968.027832 5382.856934
Vdco 40.0 40.0 40.0 40.0 45.0 45.0 320.0 362.0 370.0 310.0 ... 375.0 40.0 182.0 199.0 218.0 222.5 263.0 254.0 263.0 280.0
C0 -0.000041 -0.000039 -0.000033 -0.000034 -0.000045 -0.000035 -0.000003 -0.000001 -0.000001 -0.000008 ... -0.000008 0.000062 -0.000021 -0.000013 -0.000014 -0.000008 -0.000009 -0.000006 -0.000006 -0.000005
C1 -0.000091 -0.000132 -0.000192 -0.000256 -0.000196 -0.000227 -0.000036 -0.000049 -0.000056 -0.000011 ... -0.000075 -0.000098 0.000057 0.000055 0.000061 0.000036 0.000035 0.000028 0.000034 0.000044
C2 0.000494 0.002418 0.000907 0.002453 0.001959 -0.000526 0.000305 -0.00052 -0.001437 0.000999 ... 0.000544 0.000231 0.002001 0.001703 0.002053 0.001708 0.001417 0.001381 0.000586 0.00126
C3 -0.013171 -0.014926 -0.031742 -0.028223 -0.023725 -0.041214 -0.002351 -0.003855 -0.007112 -0.000287 ... -0.000338 0.121032 0.000623 0.000315 0.00153 0.00086 0.001218 0.000889 0.000195 0.000367
Pnt 0.075 0.075 0.09 0.09 0.09 0.09 0.1 0.4 0.4 0.1 ... 0.954 0.069 0.33 0.6 0.75 0.9 1.05 1.38 1.44 1.56
Vdcmax 50.0 50.0 50.0 50.0 60.0 60.0 416.0 416.0 416.0 480.0 ... 400.0 49.0 380.0 380.0 400.0 380.0 400.0 400.0 400.0 400.0
Idcmax 6.489715 6.487302 7.791731 7.789522 6.942691 6.933435 32.775958 28.441932 33.402175 10.136456 ... 8.841745 6.140761 6.560961 10.863717 12.077228 14.408686 13.847302 18.889003 18.88984 19.224489
Mppt_low 30.0 30.0 30.0 30.0 30.0 30.0 220.0 220.0 250.0 100.0 ... 100.0 30.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 240.0
Mppt_high 50.0 50.0 50.0 50.0 60.0 60.0 416.0 416.0 416.0 480.0 ... 400.0 49.0 380.0 380.0 400.0 380.0 400.0 400.0 400.0 400.0
CEC_Date NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
CEC_Type Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive ... Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive Utility Interactive

16 rows × 3264 columns

For the temperature parameters, we assume an open rack glass-glass configuration.

temperature_model_parameters = pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass']

We calculate the Sun’s coordinates and the irradiance on the plane of array (POA).

# calculate Sun's coordinates
solar_position = location.get_solarposition(times=tmy.index)

# calculate irradiante at the plane of the array (poa)
poa_irradiance = pvlib.irradiance.get_total_irradiance(surface_tilt=tilt,
                                                       surface_azimuth=orientation,
                                                       dni=tmy['dni'],
                                                       ghi=tmy['ghi'],
                                                       dhi=tmy['dhi'],
                                                       solar_zenith=solar_position['apparent_zenith'],
                                                       solar_azimuth=solar_position['azimuth'])

The reference yield can be estimated as the sum of the irradiance on the plane of the array.

Y_R=0.001*poa_irradiance['poa_global'].sum() # Wh->kWh
print('Reference Yield = '+str(Y_R.round(1)) + ' kWh')
Reference Yield = 2260.6 kWh

We calculate now the effective irradiance, for which we need to estimate the air mass and the angle of incidence (AOI).

#calculate airmass 
airmass = pvlib.atmosphere.get_relative_airmass(solar_position['apparent_zenith'])
pressure = pvlib.atmosphere.alt2pres(altitude)
am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure)
    
#calculate the angle of incidence (aoi)
aoi = pvlib.irradiance.aoi(surface_tilt=tilt,
                           surface_azimuth=orientation,                              
                           solar_zenith=solar_position['apparent_zenith'],
                           solar_azimuth=solar_position['azimuth'])

effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance(poa_irradiance['poa_direct'],
                                                                poa_irradiance['poa_diffuse'],
                                                                am_abs,
                                                                aoi,
                                                                module)

We calculate the DC power generation of the system, the array yield \(Y_A\), and the capture losses.

# calculate the solar cell temperature
cell_temperature = pvlib.temperature.sapm_cell(poa_irradiance['poa_global'],
                                               tmy["temp_air"],
                                               tmy["wind_speed"],
                                               **temperature_model_parameters,)

#calculate the DC generation in every hour
dc_power = pvlib.pvsystem.sapm(effective_irradiance, cell_temperature, module)

P_STC=module['Impo']*module['Vmpo']

Y_A = dc_power['p_mp'].sum()/P_STC 
L_C = 1-Y_A/Y_R

print('Array Yield, Y_A = '+str(Y_A.round(1)) + ' kWh')
print('Capture Losses, L_C = '+str(100*L_C.round(2))+ ' %')
Array Yield, Y_A = 2035.2 kWh
Capture Losses, L_C = 10.0 %

We calculate the AC power generation of the system, the final yield, the system losses, and the performance ratio.

ac_power = pvlib.inverter.sandia(dc_power['v_mp'], dc_power['p_mp'], inverter)

Y_F = ac_power.sum()/P_STC 

L_S=1-Y_F/Y_A

PR=Y_F/Y_R

print('Final Yield, Y_F = '+str(Y_F.round(1))+ ' kWh')
print('System Losses, L_S = '+str(100*L_S.round(2))+ ' %')
print('Performance Ratio, PR = '+str(100*PR.round(2))+ ' %')
Final Yield, Y_F = 1951.9 kWh
System Losses, L_S = 4.0 %
Performance Ratio, PR = 86.0 %

We can also plot the ac power vs the irradiance and use the color plot to represent the cell temperature.

plt.figure()
pc = plt.scatter(poa_irradiance['poa_global'], ac_power, c=cell_temperature, cmap='jet')
plt.colorbar(label='Cell temperature [C]', ax=plt.gca())
pc.set_alpha(0.3)
plt.grid(alpha=0.5)
plt.xlabel('Irradiance [W/m²]')
plt.ylabel('AC power [W]')
plt.show()
../../_images/bac5c17085e7afa48b447dcbc79fc2a07efc5457b65ca8493ab9a25b54b4a22f.png
plt.figure()
pc = plt.scatter(poa_irradiance['poa_global'], dc_power['p_mp'], c=cell_temperature, cmap='jet')
plt.colorbar(label='Cell temperature [C]', ax=plt.gca())
pc.set_alpha(0.3)
plt.grid(alpha=0.5)
plt.xlabel('Irradiance [W/m²]')
plt.ylabel('Power PV generator [W]')
plt.show()
../../_images/fc5a7dac7ddfa976cf17cdc2ad0a4b81e3ae0314990ae0e3f991cae22785cea6.png