Problem 7.3

Problem 7.3#

Integrated Energy Grids

Problem 7.3

Assume that we have three locations (1,2,3) with an electric bus and a heating bus. The electricity loads are [0, 10, 20] MWh and the heating loads are [30, 20, 10] MWh. The electric buses are connected with transmission lines in a ring and there is a gas power generator at node 1 with an efficiency of 0.3 and a marginal cost of 50 EUR/MWh. At each location the electric and heating buses are connected with heat pumps with a coefficient of performance (COP) of 3; heat can also be supplied to every heat bus with a gas boiler with an efficiency of 0.9 and a marginal cost of 20 EUR/MWh.

(a) Calculate the optimal heat generation by every component and the optical power flowing through the lines.

(b) Repeat (a) assuming that the marginal cost of heat pumps is 10 EUR/MWh.

Note: This problem is based on the PyPSA example LOPF with coupling to heating sector.

Note

If you have not yet set up Python on your computer, you can execute this tutorial in your browser via Google Colab. Click on the rocket in the top right corner and launch “Colab”. If that doesn’t work download the .ipynb file and import it in Google Colab.

Then install the following packages by executing the following command in a Jupyter cell at the top of the notebook.

!pip install numpy pypsa
import matplotlib.pyplot as plt
import pandas as pd
import pypsa

We start by building the network object that will contain the optimization problem

network = pypsa.Network()

Add three buses of AC and heat carrier each

for i in range(3):
    network.add("Bus", f"electric bus {i}", v_nom=20.0)
    network.add("Bus", f"heat bus {i}", carrier="heat")
network.buses
v_nom type x y carrier unit location v_mag_pu_set v_mag_pu_min v_mag_pu_max control generator sub_network
Bus
electric bus 0 20.0 0.0 0.0 AC 1.0 0.0 inf PQ
heat bus 0 1.0 0.0 0.0 heat 1.0 0.0 inf PQ
electric bus 1 20.0 0.0 0.0 AC 1.0 0.0 inf PQ
heat bus 1 1.0 0.0 0.0 heat 1.0 0.0 inf PQ
electric bus 2 20.0 0.0 0.0 AC 1.0 0.0 inf PQ
heat bus 2 1.0 0.0 0.0 heat 1.0 0.0 inf PQ

Now, we add three transmission lines in a ring

for i in range(3):
    network.add(
        "Line",
        f"line {i}",
        bus0=f"electric bus {i}",
        bus1=f"electric bus {(i + 1) % 3}",
        x=0.1,
        s_nom=1000,
    )
network.lines
bus0 bus1 type x r g b s_nom s_nom_mod s_nom_extendable ... v_ang_min v_ang_max sub_network x_pu r_pu g_pu b_pu x_pu_eff r_pu_eff s_nom_opt
Line
line 0 electric bus 0 electric bus 1 0.1 0.0 0.0 0.0 1000.0 0.0 False ... -inf inf 0.0 0.0 0.0 0.0 0.0 0.0 0.0
line 1 electric bus 1 electric bus 2 0.1 0.0 0.0 0.0 1000.0 0.0 False ... -inf inf 0.0 0.0 0.0 0.0 0.0 0.0 0.0
line 2 electric bus 2 electric bus 0 0.1 0.0 0.0 0.0 1000.0 0.0 False ... -inf inf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 rows × 31 columns

We connect every electricity bus to its corresponding heat bus using a heat pump with Coefficient of Performance (COP) 3

for i in range(3):
    network.add(
        "Link",
        f"heat pump {i}",
        bus0=f"electric bus {i}",
        bus1=f"heat bus {i}",
        p_nom=100,
        efficiency=3.0,
    )
    
network.links
bus0 bus1 type carrier efficiency active build_year lifetime p_nom p_nom_mod ... shut_down_cost min_up_time min_down_time up_time_before down_time_before ramp_limit_up ramp_limit_down ramp_limit_start_up ramp_limit_shut_down p_nom_opt
Link
heat pump 0 electric bus 0 heat bus 0 3.0 True 0 inf 100.0 0.0 ... 0.0 0 0 1 0 NaN NaN 1.0 1.0 0.0
heat pump 1 electric bus 1 heat bus 1 3.0 True 0 inf 100.0 0.0 ... 0.0 0 0 1 0 NaN NaN 1.0 1.0 0.0
heat pump 2 electric bus 2 heat bus 2 3.0 True 0 inf 100.0 0.0 ... 0.0 0 0 1 0 NaN NaN 1.0 1.0 0.0

3 rows × 34 columns

We add a gas generator at electric bus 0 and a boiler at all heat buses

network.add(
    "Generator",
    "gas generator",
    bus="electric bus 0",
    p_nom=100,
    marginal_cost=50,
    efficiency=0.3,
)

for i in range(3):
    network.add(
        "Generator",
        f"boiler {i}",
        bus=f"heat bus {i}",
        p_nom=1000,
        efficiency=0.9,
        marginal_cost=20.0,
        carrier="gas",
    )

network.generators
bus control type p_nom p_nom_mod p_nom_extendable p_nom_min p_nom_max p_min_pu p_max_pu ... min_up_time min_down_time up_time_before down_time_before ramp_limit_up ramp_limit_down ramp_limit_start_up ramp_limit_shut_down weight p_nom_opt
Generator
gas generator electric bus 0 PQ 100.0 0.0 False 0.0 inf 0.0 1.0 ... 0 0 1 0 NaN NaN 1.0 1.0 1.0 0.0
boiler 0 heat bus 0 PQ 1000.0 0.0 False 0.0 inf 0.0 1.0 ... 0 0 1 0 NaN NaN 1.0 1.0 1.0 0.0
boiler 1 heat bus 1 PQ 1000.0 0.0 False 0.0 inf 0.0 1.0 ... 0 0 1 0 NaN NaN 1.0 1.0 1.0 0.0
boiler 2 heat bus 2 PQ 1000.0 0.0 False 0.0 inf 0.0 1.0 ... 0 0 1 0 NaN NaN 1.0 1.0 1.0 0.0

4 rows × 37 columns

Add electric loads and heat loads.

for i in range(3):
    network.add(
        "Load",
        f"electric load {i}",
        bus=f"electric bus {i}",
        p_set=i * 10,
    )

for i in range(3):
    network.add(
        "Load",
        f"heat load {i}",
        bus=f"heat bus {i}",
        p_set=(3 - i) * 10,
    )

network.loads
bus carrier type p_set q_set sign active
Load
electric load 0 electric bus 0 0.0 0.0 -1.0 True
electric load 1 electric bus 1 10.0 0.0 -1.0 True
electric load 2 electric bus 2 20.0 0.0 -1.0 True
heat load 0 heat bus 0 30.0 0.0 -1.0 True
heat load 1 heat bus 1 20.0 0.0 -1.0 True
heat load 2 heat bus 2 10.0 0.0 -1.0 True
network.optimize()
WARNING:pypsa.consistency:The following generators have carriers which are not defined:
Index(['boiler 0', 'boiler 1', 'boiler 2'], dtype='object', name='Generator')
WARNING:pypsa.consistency:The following lines have carriers which are not defined:
Index(['line 0', 'line 1', 'line 2'], dtype='object', name='Line')
WARNING:pypsa.consistency:The following lines have zero r, which could break the linear load flow:
Index(['line 0', 'line 1', 'line 2'], dtype='object', name='Line')
WARNING:pypsa.consistency:The following links have carriers which are not defined:
Index(['heat pump 0', 'heat pump 1', 'heat pump 2'], dtype='object', name='Link')
WARNING:pypsa.consistency:The following buses have carriers which are not defined:
Index(['electric bus 0', 'heat bus 0', 'electric bus 1', 'heat bus 1',
       'electric bus 2', 'heat bus 2'],
      dtype='object', name='Bus')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.03s
INFO:linopy.constants: Optimization successful: 
Status: ok
Termination condition: optimal
Solution: 10 primals, 27 duals
Objective: 2.50e+03
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Link-fix-p-lower, Link-fix-p-upper, Kirchhoff-Voltage-Law were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-pyd_fs6m has 27 rows; 10 cols; 39 nonzeros
Coefficient ranges:
  Matrix [1e+00, 2e+01]
  Cost   [2e+01, 5e+01]
  Bound  [0e+00, 0e+00]
  RHS    [1e+01, 1e+03]
Presolving model
4 rows, 7 cols, 13 nonzeros  0s
3 rows, 6 cols, 11 nonzeros  0s
2 rows, 5 cols, 7 nonzeros  0s
1 rows, 4 cols, 4 nonzeros  0s
0 rows, 0 cols, 0 nonzeros  0s
Presolve : Reductions: rows 0(-27); columns 0(-10); elements 0(-39) - Reduced to empty
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-pyd_fs6m
Model status        : Optimal
Objective value     :  2.5000000000e+03
Relative P-D gap    :  1.8189894035e-16
HiGHS run time      :          0.00
Writing the solution to /tmp/linopy-solve-lelceuqq.sol
('ok', 'optimal')

We can calculate and plot the energy produced by every boiler, heat pumps and trasmitted through the lines

demands = network.loads_t.p.loc["now"]
generators =  network.generators_t.p.loc["now"]
links = network.links_t.p0.loc["now"]
lines = network.lines_t.p0.loc["now"]
generators.plot.bar()
<Axes: xlabel='Generator'>
../_images/b7ca75d9e445665f0eeb1844f37bbf48e8a7189eac0df54f127a6b2e8027ee2e.png
links.plot.bar()
<Axes: xlabel='Link'>
../_images/f11db5af9f02945b46d97840c2bcf67917a81a65c2b935532b8e231eb954625b.png
lines.plot.bar()
<Axes: xlabel='Line'>
../_images/5c80dda51277da7ad82c145342d84a2fc451cb26a472d7b78a51817ab0ee3669.png

(b) Repeat (a) assuming that the marginal cost of heat pumps is 10 EUR/MWh.

We update the marginal cost of heat pumps and redo the optimization

network.links.marginal_cost = 10
network.optimize()

demands = network.loads_t.p.loc["now"]
generators =  network.generators_t.p.loc["now"]
links = network.links_t.p0.loc["now"]
lines = network.lines_t.p0.loc["now"]
WARNING:pypsa.consistency:The following sub_networks have carriers which are not defined:
Index(['0'], dtype='object', name='SubNetwork')
WARNING:pypsa.consistency:The following generators have carriers which are not defined:
Index(['boiler 0', 'boiler 1', 'boiler 2'], dtype='object', name='Generator')
WARNING:pypsa.consistency:The following lines have carriers which are not defined:
Index(['line 0', 'line 1', 'line 2'], dtype='object', name='Line')
WARNING:pypsa.consistency:The following lines have zero r, which could break the linear load flow:
Index(['line 0', 'line 1', 'line 2'], dtype='object', name='Line')
WARNING:pypsa.consistency:The following links have carriers which are not defined:
Index(['heat pump 0', 'heat pump 1', 'heat pump 2'], dtype='object', name='Link')
WARNING:pypsa.consistency:The following buses have carriers which are not defined:
Index(['electric bus 0', 'heat bus 0', 'electric bus 1', 'heat bus 1',
       'electric bus 2', 'heat bus 2'],
      dtype='object', name='Bus')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.03s
INFO:linopy.constants: Optimization successful: 
Status: ok
Termination condition: optimal
Solution: 10 primals, 27 duals
Objective: 2.70e+03
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Link-fix-p-lower, Link-fix-p-upper, Kirchhoff-Voltage-Law were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-wydzc3fr has 27 rows; 10 cols; 39 nonzeros
Coefficient ranges:
  Matrix [1e+00, 2e+01]
  Cost   [1e+01, 5e+01]
  Bound  [0e+00, 0e+00]
  RHS    [1e+01, 1e+03]
Presolving model
4 rows, 7 cols, 13 nonzeros  0s
3 rows, 6 cols, 11 nonzeros  0s
2 rows, 5 cols, 7 nonzeros  0s
1 rows, 4 cols, 4 nonzeros  0s
0 rows, 0 cols, 0 nonzeros  0s
Presolve : Reductions: rows 0(-27); columns 0(-10); elements 0(-39) - Reduced to empty
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-wydzc3fr
Model status        : Optimal
Objective value     :  2.7000000000e+03
Relative P-D gap    :  0.0000000000e+00
HiGHS run time      :          0.00
Writing the solution to /tmp/linopy-solve-zcaedls5.sol
generators.plot.bar()
<Axes: xlabel='Generator'>
../_images/cae6d20e69a3e9bf16b717b71866304828b690545a343e3e02d688dae101eb5a.png
links.plot.bar()
<Axes: xlabel='Link'>
../_images/67d6f94ba1f1397315f28a0a16727c3b45b2d5883733c6abcbb5d926e446afab.png
lines.plot.bar()
<Axes: xlabel='Line'>
../_images/edf528140c334126796a0ca990aa759e811f58e1549fb9fd299f5ad573bc601d.png