{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 12.10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Fundamentals of Solar Cells and Photovoltaic Systems Engineering**\n", "\n", "**Solutions Manual - Chapter 12**\n", "\n", "**Problem 12.10**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Given the QE of a silicon test cell and a calibrated cell, obtain their respective SR and calculate the Spectral Mismatch Factor $M_f$, when the test cell is measured using a Xe-arc lamp, relative to the reference spectrum AM1.5G.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use the package [pandas](https://pandas.pydata.org/) to handle the data and [matplotlib.pyplot](https://matplotlib.org/stable/index.html) to plot the results." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by importing the data for the solar spectra." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AM0AM1.5GAM1.5D
Wvlgth nmEtr W*m-2*nm-1Global tilt W*m-2*nm-1Direct+circumsolar W*m-2*nm-1
2808.20E-024.73E-232.54E-26
280.59.90E-021.23E-211.09E-24
2811.50E-015.69E-216.13E-24
281.52.12E-011.57E-192.75E-22
............
39808.84E-037.39E-037.40E-03
39858.80E-037.43E-037.45E-03
39908.78E-037.37E-037.39E-03
39958.70E-037.21E-037.23E-03
40008.68E-037.10E-037.12E-03
\n", "

2003 rows × 3 columns

\n", "
" ], "text/plain": [ " AM0 AM1.5G \\\n", "Wvlgth nm Etr W*m-2*nm-1 Global tilt W*m-2*nm-1 \n", "280 8.20E-02 4.73E-23 \n", "280.5 9.90E-02 1.23E-21 \n", "281 1.50E-01 5.69E-21 \n", "281.5 2.12E-01 1.57E-19 \n", "... ... ... \n", "3980 8.84E-03 7.39E-03 \n", "3985 8.80E-03 7.43E-03 \n", "3990 8.78E-03 7.37E-03 \n", "3995 8.70E-03 7.21E-03 \n", "4000 8.68E-03 7.10E-03 \n", "\n", " AM1.5D \n", "Wvlgth nm Direct+circumsolar W*m-2*nm-1 \n", "280 2.54E-26 \n", "280.5 1.09E-24 \n", "281 6.13E-24 \n", "281.5 2.75E-22 \n", "... ... \n", "3980 7.40E-03 \n", "3985 7.45E-03 \n", "3990 7.39E-03 \n", "3995 7.23E-03 \n", "4000 7.12E-03 \n", "\n", "[2003 rows x 3 columns]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reference = pd.read_csv('data/Reference_spectrum_ASTM-G173-03.csv', index_col=0, header=0) \n", "reference" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "reference.drop(reference.index[0], inplace=True) # remove row including information on units\n", "reference=reference.astype(float) # convert values to float for easy operation\n", "reference.index=reference.index.astype(float) # convert indexes to float for easy operation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We import the data for the Xe-arc lamp." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Xe arc lamp (W*m-2*nm-1)
wavelength (nm)
300.369660.000793
300.580050.000816
300.790440.000837
301.000820.000858
301.211240.000876
......
1199.772460.213920
1199.843020.213600
1199.913450.213280
1199.984010.212960
1200.054440.212640
\n", "

6283 rows × 1 columns

\n", "
" ], "text/plain": [ " Xe arc lamp (W*m-2*nm-1)\n", "wavelength (nm) \n", "300.36966 0.000793\n", "300.58005 0.000816\n", "300.79044 0.000837\n", "301.00082 0.000858\n", "301.21124 0.000876\n", "... ...\n", "1199.77246 0.213920\n", "1199.84302 0.213600\n", "1199.91345 0.213280\n", "1199.98401 0.212960\n", "1200.05444 0.212640\n", "\n", "[6283 rows x 1 columns]" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xe_arc = pd.read_csv('data/Xe lamp spectral irradiance.csv', index_col=0, header=0) \n", "xe_arc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also plot the AM1.5G spectra and the Xe-arc lamp spectra." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACn5klEQVR4nOydd3wThfvHP5fRdO9FoXRQoEDZS5bsIRu3MhUHKkP5OsC9ECci+mOILCeIIqIiyN67lL1paYFCge6dcb8/rknuLpc212aVPu/Xixe372ma5j55JsOyLAuCIAiCIAg3ROFqAwiCIAiCIKxBQoUgCIIgCLeFhApBEARBEG4LCRWCIAiCINwWEioEQRAEQbgtJFQIgiAIgnBbSKgQBEEQBOG2qFxtQE0wGAy4fv06/Pz8wDCMq80hCIIgCMIGWJZFQUEBoqKioFBU7jOp1ULl+vXriI6OdrUZBEEQBEFUg4yMDDRo0KDSY2q1UPHz8wPA/aD+/v4utoYgCIIgCFvIz89HdHS06TleGbVaqBjDPf7+/iRUCIIgCKKWYUvaBiXTEgRBEAThtpBQIQiCIAjCbSGhQhAEQRCE21Krc1QIgiAI90Ov10Or1braDMKFqNVqKJVKu1yLhApBEARhF1iWxY0bN5Cbm+tqUwg3IDAwEJGRkTXuc0ZChSAIgrALRpESHh4Ob29vasRZR2FZFsXFxcjKygIA1KtXr0bXI6FCEARB1Bi9Xm8SKSEhIa42h3AxXl5eAICsrCyEh4fXKAxEybQEQRBEjTHmpHh7e7vYEsJdML4XapqvREKFIAiCsBsU7iGM2Ou9QEKFIAiCIAi3hYQKQRAEQRBuCwkVgiAIgiDcFhIqBEEQjoJlgbPrgbTdrraEsIG9e/dCqVRi0KBBgu1paWlgGAYqlQrXrl0T7MvMzIRKpQLDMEhLSzNtnzZtGtq3bw+NRoM2bdrYdP9evXqBYRjBv0cffdTiuG3btmHo0KEICwuDp6cnGjVqhEceeQQ7d+6U/TPXBkioEARBOIrTa4GVjwHLhwC3zrnaGqIKli5diilTpmD37t1IT0+32B8VFYXvv/9esG3FihWoX7++xbEsy+LJJ5/EI488IsuGp59+GpmZmaZ/ixYtEuyfP38++vbti5CQEKxatQpnzpzBDz/8gK5du+Kll16Sda/aAgkVgiAIR7F6gnn59J8uM4OomqKiIvz666947rnnMHToUCxfvtzimPHjx2PZsmWCbcuXL8f48eMtjp03bx5eeOEFxMfHy7LD29sbkZGRpn8BAQGmfenp6XjxxRfx4osvYsWKFejTpw/i4uLQtWtXTJs2DYcPH5Z1r9oCNXwjCIJwBqV5rrbAJQz7ejduFZQ59Z5hfhr8NaW7rHNWrVqFpk2bomnTphgzZgymTJmCt956S1BiO3z4cCxcuBC7d+9G9+7dsXv3bmRnZ2PYsGH44IMP7GL7Tz/9hB9//BERERG477778M4778DPzw8A8Pvvv0Or1eLVV1+VPPduLQ0noUIQBOEMWNbVFriEWwVluJFf6mozqmTJkiUYM2YMAGDQoEEoLCzEli1b0K9fP9MxarUaY8aMwdKlS9G9e3csXboUY8aMgVqttosNo0ePRlxcHCIjI3Hy5EnMnDkTx44dw6ZNmwAA58+fh7+/PyIjI03n/P777wKPzr59+9CyZUu72OMukFAhCIJwBsq6+XEb5qdx+3ueO3cOBw8exJo1awAAKpUKjzzyCJYuXSoQKgAwceJEdOnSBR999BFWr16Nffv2QafT2cXup59+2rSclJSExo0bo0OHDkhOTka7du0AWHpNBg4ciJSUFFy7dg29evWCXq+3iy3uRN38yyEIgnA2Cvt8665tyA3BuIIlS5ZAp9MJkmJZloVarUZOTo7g2KSkJCQmJuKxxx5Ds2bNkJSUhJSUFIfY1a5dO6jValy4cAHt2rVD48aNkZeXhxs3bpi8Kr6+vkhISIBKdfc+zimZliAIwhko7t4HSW1Gp9Ph+++/xxdffIGUlBTTv2PHjiEmJgY//fSTxTlPPvkktm/fjieffNKhtp06dQpardY0ffjBBx+EWq3GJ5984tD7uhv0l0MQBOEM7tJEx9rO33//jZycHEycOFFQYQNwwmDJkiUYOnSoYPvTTz+Nhx56CIGBgVave/HiRRQWFuLGjRsoKSkxeV2aN28ODw8PXLt2DX379sX333+PTp064dKlS/jpp58wePBghIaG4vTp0/jf//6Htm3bolu3bgCAhg0b4osvvsC0adOQnZ2NCRMmIC4uDtnZ2fjxxx8BoEZTit0VEioEQRDOwGCfPAbCvixZsgT9+vWzECkA8MADD+Cjjz5Cdna2YLtKpUJoaGil133qqaewY8cO03rbtm0BAKmpqYiNjYVWq8W5c+dQXFwMAPDw8MCWLVvw1VdfobCwENHR0RgyZAjeeecdgfiYMmUKmjVrhjlz5uDBBx9Efn4+QkJC0KVLF2zYsOGuS6QFAIZla28qen5+PgICApCXlwd/f39Xm0MQBCHkXd7Dr9uLQP/3XGaKoyktLUVqairi4uLg6enpanMIN6Cy94Sc5zflqBAEQTgD8qgQRLUgoUIQBOEMDHdf2ShBOAMSKgRBEM6APCoEUS1IqBAEQTgDg9bVFhBErYSECkEQhDMgjwpBVAsSKgRBEM6AclQIolqQUCEIgnAGegr9EER1IKFCEAThDFiDqy0giFoJCRWCIAhnQEKFcADLly+vtJX/3QAJFYIgCGdAQsXt0Ov16Nq1Kx544AHB9ry8PERHR+PNN990kWUEHxIqBEEQzoCEituhVCqxYsUKbNiwQTAlecqUKQgODsbbb7/tVHvKy8uder/aAgkVgiAIos7SuHFjzJ49G1OmTMH169fx559/YuXKlVixYgU8PDwAcALi1VdfRf369eHj44POnTtj+/btlV730qVLGDFiBCIiIuDr64uOHTti8+bNgmNiY2Px4YcfYsKECQgICMDTTz8NANizZw969uwJb29vBAUFYeDAgcjJybHp55Fz33HjxsHX1xcxMTH4888/cevWLYwYMQK+vr5o2bIlDh8+bDrHGGJau3YtmjRpAk9PT/Tv3x8ZGRk22VUTSKgQBEE4AoPIg0IeFbdlypQpaN26NcaNG4dnnnkGb7/9Ntq0aWPa/8QTT2DPnj1YuXIljh8/joceegiDBg3ChQsXrF6zsLAQgwcPxubNm3H06FEMHDgQw4YNQ3p6uuC4zz77DElJSThy5AjeeustpKSkoG/fvmjRogX27duH3bt3Y9iwYdDrbStvt/W+X375Jbp164ajR49iyJAhGDt2LMaNG4cxY8YgOTkZCQkJGDduHPhzi4uLizFr1iysWLECe/bsQX5+Ph599FGb7KoJbjM9efbs2Xj99dcxbdo0zJ0716ZzaHoyQRBui14LfBBqXm8yCHh8levscTBWJ+Uu6gkUZjnXGN9w4Nkdsk45e/YsmjVrhpYtWyI5ORkqlQoA56Fo3Lgxrl69iqioKNPx/fr1Q6dOnfDRRx/ZfI8WLVrgueeew+TJkwFwno22bdvijz/+MB3z+OOPIz09Hbt377bpmsuXL8eLL76I3NxcWfft0aMHfvjhBwDAjRs3UK9ePbz11lt4//33AQD79+9Hly5dkJmZicjISCxfvhxPPPEE9u/fj86dOwMwv2YHDhxAp06dLO5rr+nJKpteCQdz6NAhfPvtt2jVqpWrTSEIgrAP4gZvddWjUpgFFFx3tRVVsnTpUnh7eyM1NRVXr15FbGwsACA5ORksy6JJkyaC48vKyhASEgIA8PX1NW0fM2YMFi5ciKKiIrz33nv4+++/cf36deh0OpSUlFh4Njp06CBYT0lJwUMPPVTtn8PW+/KftxEREQCAli1bWmzLyspCZGQkAEClUgnsTUxMRGBgIM6cOSMpVOyFy4VKYWEhRo8ejcWLF+PDDz90tTkEQRD2Qdwyv64KFd9wt7/nvn378OWXX+Lff//Fp59+iokTJ2Lz5s1gGAYGgwFKpRJHjhyBUqkU3qZCoKSkpJi2Gb0Dr7zyCjZu3IjPP/8cCQkJ8PLywoMPPmiRMOvj4yNY9/LykmW7GFvvq1arTcsMw1jdZhCFMI3bq9pmT1wuVF544QUMGTIE/fr1q1KolJWVoayszLSen5/vaPMIgiCqB0seFQCyQzDOpqSkBOPHj8ezzz6Lfv36oUmTJkhKSsKiRYswadIktG3bFnq9HllZWejRo4fkNRISEiy27dq1CxMmTMCoUaMAcF/K09LSqrSnVatW2LJlC957771q/TzVva8t6HQ6HD582OQ9OXfuHHJzc5GYmGiX61vDpcm0K1euRHJyMmbPnm3T8bNnz0ZAQIDpX3R0tIMtJAiCqCYU+qkVzJgxAwaDAZ988gkAoGHDhvjiiy/wyiuvIC0tDU2aNMHo0aMxbtw4rFmzBqmpqTh06BA++eQTrF+/3up1ExISsGbNGqSkpODYsWN4/PHHLbwTUsycOROHDh3C888/j+PHj+Ps2bNYsGABbt++bdPPU9372oJarcaUKVNw4MABJCcn44knnsA999zj0LAP4EKhkpGRgWnTpuHHH3+0SLKxxsyZM5GXl2f654yyKIIgiGpBQsXt2bFjB/7v//4Py5cvF4Rgnn76aXTt2hUTJ04Ey7JYtmwZxo0bh//9739o2rQphg8fjgMHDlT6ZfnLL79EUFAQunbtimHDhmHgwIFo165dlTY1adIE//33H44dO4ZOnTqhS5cu+PPPP03JvVVR3fvagre3N1577TU8/vjj6NKlC7y8vLBy5Uq7XLsyXFb1s3btWowaNUoQ89Pr9WAYBgqFAmVlZRbxQDFU9UMQhNtScAP4oql5PbYHMOFv19njYCqr8CBqP7ZUF4mp9VU/ffv2xYkTJwTbnnjiCSQmJuK1116rUqQQBEG4NRbJtG7RCYIgah0uEyp+fn5ISkoSbPPx8UFISIjFdoIgiFoHhX4Iwi5QZ1qCIAhHQOXJxF3EhAkTZIV97InLy5P5VDU7gSAIotYgFiYkVAiiWpBHhSAIwhHU0dCPm0xlIdwAe70XSKgQBEE4gjoW+jF2NS0uLnaxJYS7YHwv8DveVgfZoZ+0tDTs2rULaWlpKC4uRlhYGNq2bYsuXbpQSRpBEIQRcWda3N2eBqVSicDAQGRlcQMIvb29Hd5anXBPWJZFcXExsrKyEBgYWOMqXpuFys8//4x58+bh4MGDCA8PR/369eHl5YXs7GxcunQJnp6eGD16NF577TXExMTUyCiCIIhaTx3zqAAwDa8zihWibhMYGGh6T9QEm4RKu3btoFAoMGHCBPz6669o2LChYH9ZWRn27duHlStXokOHDpg/f36Npj8SBEHUesRty+uAUGEYBvXq1UN4eDi0Wq2rzSFciFqttls/NJuEygcffIAhQ4ZY3a/RaNCrVy/06tULH374IVJTU+1iHEEQRK2lDjd8UyqV1LSTsBs2CZXKRIqY0NBQhIaGVtsggiCIuwKankwQdsFuVT86nQ7p6en2uhxBEETtpo6WJxOEvbGbUDl16hTi4uLsdTmCIIjaDXlUCMIuUB8VgiAIRyDOSSGhQhDVwuby5Hbt2lW6v6SkpMbGEARB3DVYCJW6k0xLEPbEZqFy+vRpPProo1bDO5mZmTh//rzdDCMIgqjdkEeFIOyBzUIlKSkJnTt3xnPPPSe5PyUlBYsXL7abYQRBELUaGkpIEHbB5hyV7t2749y5c1b3+/n54d5777WLUQRBEA7BYAD+nAws7gPcOOnYe1HohyDsgs0elblz51a6v1GjRti2bVtN7SEIgnAcl7cBR3/glnd+Bjy8wnH3Io8KQdgFqvohCKLucOeSefn0WgffjHJUCMIe1EiotGzZEhkZGfayhSAIwrFYTDR25L3Io0IQ9qBGQiUtLY0GTxEEUXvQFjvvXhbChHJUCKI6UOiHIIi6Q1mB8+5FDd8Iwi7USKj06NEDXl5e9rKFIAjCsZTmO+9eFPohCLtgc9WPFOvXr7eXHQRBEI5Hy+ugrajRx58NkEeFIOxBtf5Sr127hj179iArKwsGg/CPb+rUqXYxjCAIwu7oy8zLjIMj3xT6IQi7IFuoLFu2DJMmTYKHhwdCQkLAMIxpH8MwJFQIgnBfdK4UKpRMSxDVQbZQefvtt/H2229j5syZUCgoF5cgiFqEU4UK5agQhD2Q/ZdaXFyMRx99lEQKQRC1D2eGfihHhSDsguy/1IkTJ2L16tWOsIUgCMKx6MrNy073qFDohyCqg+zQz+zZszF06FBs2LABLVu2hFqtFuyfM2eO3YwjCIKwK7pS87KjPRyUTEsQdkG2UPnoo4+wceNGNG3aFAAskmkJgiDcFn259LIjoBwVgrALsoXKnDlzsHTpUkyYMMEB5hAEQTgQfjKtwcFzf0ioEIRdkB2k1Wg06NatmyNsIQiCcCx8Lwqrd3DeiDj048SBiARxFyFbqEybNg1ff/21I2whCIJwLPwcFcCxXhXyoBCEXZAd+jl48CC2bt2Kv//+Gy1atLBIpl2zZo3djCMIgrArOlFeikEHKB3USl/KW8OyAOXyEYQsZP+FBgYG4v7773eELQRBEI7FoKt83Z5IeVRYA8AoHXdPgrgLqVYLfYIgiFqJOE/EkUJF8v4GACRUCEIO1F6WIIi6g1iYODKPxJpHhSAIWcgWKjdv3sTYsWMRFRUFlUoFpVIp+EcQBOG2iJNnHRr6sZKjQhCELGSHfiZMmID09HS89dZbqFevHjV5IwiidmAwwKJk2BU5KgRByEK2UNm9ezd27dqFNm3aOMAcgiAIByHVx4SECkG4PbJDP9HR0WDJfUkQRG1DqmeKQ5NppT4n6bOTIOQiW6jMnTsXM2bMQFpamgPMIQiCcBBSosTZDd/Io0IQspEd+nnkkUdQXFyMRo0awdvb26LhW3Z2tt2MIwiCsBtOD/1IJdOSUCEIucgWKnPnznWAGQRBEA7G2aEfSY8KhX4IQi6yhcr48eMdYQdBEIRjcYccFRIqBCEbWTkqixYtwsaNGwEA//33H7799luHGEUQBGF3JEM/lKNCEO6OLI/K/fffj5EjR6Jr16547733sHbtWgeZRRAEYWecnkwrtY2ECkHIxWaPys6dO3HmzBl07NgR99xzDzp16oQzZ85g586djrSPIAjCPrhDjgqVJxOEbGz2qGzbtg0AcP36dVy5cgXXr1/Htm3bwDAM7r33XocZSBAEYRckPSrOzlEhjwpByMVmofLOO+9Ap9OhT58+2L17N6ZNm4affvoJKpXsfFyCIAjnIyUSqDMtQbg9spJp582bh5EjR6JNmzZ44IEHMG/ePEfZRRAEYV/couEbhX4IQi6y3CFTp041DSGcPHkyDAb6dkAQRC3B6TkqFPohCHsgS6jwwzwKhQIKhewO/ARBEK6BhhISRK1EltKYP38++vXrh4cffhhbt24V7Lt9+zbi4+PtahxBEITdoGRagqiV2CxU5s2bh1deeQWJiYnQaDQYPHgwZs+ebdqv1+tx5coVhxhJEARRY6RC1c7OUSEIQjY2h34WLVqExYsX4/HHHwcAPP/88xg5ciRKSkrw/vvvO8xAgiAIu+BsjwrlqBCEXbBZqKSmpqJr166m9S5dumDr1q3o27cvtFotXnzxRUfYRxAEYR8oR4UgaiU2C5XQ0FBkZGQgNjbWtK1FixbYunUr+vTpg2vXrjnCPoIgCPsgJUqkxIsjofJkgpCNzTkq3bt3x++//26xvXnz5tiyZQs2bNhgV8MIgiDsiju00CePCkHIxmaPyowZM3DkyBHJfS1atMC2bdvw22+/2c0wgiAIuyLlzaDpyQTh9tgsVFq1aoVWrVpZ3d+iRQu0aNHCLkYRBEHYHae30Jccn+y4+xHEXUqNOra1bNkSGRkZ9rKFIAjCcdCsH4KoldRIqKSlpUGr1drLFoIgCAciFfqhhm8E4e5QD3yCIOoGkh4VylEhCHenRkKlR48e8PLyspctBEEQjsMdclQoRYUgZCNrKKGY9evX28sOgiAIxyJZ9UM5KgTh7lRLqFy7dg179uxBVlYWDKL5GVOnTrWLYQRBEHbF2R4VylEhCLsgW6gsW7YMkyZNgoeHB0JCQsAwjGkfwzAkVAiCcFPcoI8KxX4IQjayhcrbb7+Nt99+GzNnzoRCQbm4BEHUEpyeTGujDQRBVIpspVFcXIxHH33ULiJlwYIFaNWqFfz9/eHv748uXbrg33//rfF1CYIgLKAcFYKolchWGxMnTsTq1avtcvMGDRrg448/xuHDh3H48GH06dMHI0aMwKlTp+xyfYIgCBNuIVQo9EMQcpEd+pk9ezaGDh2KDRs2oGXLllCr1YL9c+bMsflaw4YNE6zPmjULCxYswP79+yXb8ZeVlaGsrMy0np+fL9N6giDqLJRMSxC1EtlC5aOPPsLGjRvRtGlTALBIpq0uer0eq1evRlFREbp06SJ5zOzZs/Hee+9V+x4EQdRl3CCZloQKQchGtlCZM2cOli5digkTJtjFgBMnTqBLly4oLS2Fr68v/vjjDzRv3lzy2JkzZ2L69Omm9fz8fERHR9vFDoIg7nLcouEbCRWCkItsoaLRaNCtWze7GdC0aVOkpKQgNzcXv//+O8aPH48dO3ZIihWNRgONRmO3exMEUYdwh6GEVJ5MELKRnUw7bdo0fP3113YzwMPDAwkJCejQoQNmz56N1q1b46uvvrLb9QmCIAA4P5lWMkeFhApByEW2R+XgwYPYunUr/v77b7Ro0cIimXbNmjU1MohlWUHCLEEQhF2goYQEUSuRLVQCAwNx//332+Xmr7/+Ou677z5ER0ejoKAAK1euxPbt27Fhwwa7XJ8gCMKMs8uTyaNCEPagWi307cXNmzcxduxYZGZmIiAgAK1atcKGDRvQv39/u92DIAgCgBUPB3lUCMLdkSVU/vnnHzRu3BhNmjTBhQsXcP78eQwZMqTaN1+yZEm1zyUIgpCF0/uo2GgDQRCVIiuZNioqCi+99BIALqm2fv36DjGKIAjC7kgm09JQQoJwd2QJlbZt26Jjx44YO3YsOnXqhDZt2jjILIIgCDvjFi30yaNCEHKxOfTTu3dvMAyDnJwcHDt2DG3atMGOHTvAMAy2bt3qSBsJgiBqDjV8I4haic1CZdu2bQCARx55BM8//zy2bNmClStXOswwgiAI+0IeFYKojcgK/axatQrBwcF4+umnERISglWrVjnKLoIgCPviFkMJq5GjcngZsPldoLyoxhYRRG1EVtVPu3btMGDAAADcpOOsrCyHGEUQBGF33CGZVq5QuXYE+PtFblnjB/T4X43NIojahs0elTfffBMZGRnw8vICwDV+a9KkicMMIwiCsCu1MUfl1Frz8pb3a2QOQdRWbBYqv/zyC/r164fAwED07NkT7777Lnbt2oXy8nJH2kcQBGEfaCghQdRKbBYqly5dQkZGBhYvXoyEhAT88MMP6NmzJ4KCgtCvXz/MmjULe/fudaStBEEQNcDJoR/JHBWZHhVKviUIecm09evXx9ixY7FkyRJcunQJV65cwYIFC9CwYUN8+umnuPfeex1lJ0EQRM1w+lBCOwgVhwopgqgdyJ71Y+TSpUvYvn07tm7diu3bt0Ov16N37972tI0gCMJ+uEXDN5mhH/4sIkbW90qCuGuwWaikpqZi27Zt2LZtG7Zv3468vDx069YNPXv2xOTJk9GxY0eoVNXWPQRBEI7F6ULFDh4VXal5mVHWzB6CqKXYrCwaNWqEhg0b4vnnn8fUqVPRrl07KJX0h0MQRC3BHZJp5QoVfu8UBX3eEnUTm32JDz30EMrKyjB79mx88MEHmDt3LpKTk8FWp4ERQRCE06mFybTlxeZlBXmsibqJze98Yxfas2fPmsI/n332GUpLS9G9e3f07NkTvXr1QseOHR1mLEEQRLVxB4+K3PJkXYl5mTwqRB1FdnZWYmIinnvuOaxatQo3btzA3r170aZNG3z44Yfo0qWLI2wkCIKoOW7R8E2mUOF7fChHhaijVMuXePPmTWzfvh3bt2/Htm3bcP78eWg0GvTo0cPe9hEEQdgHt6j6kRn60WvNywxTM3sIopZis1BZvXq1KeRz7tw5qFQqdOrUCQ8//DB69+6Nrl27QqPRONJWgiCI6mMtFGMwAApHlP7aw6OirfoYgrjLsVmojB49Gh06dMCoUaPQu3dvdOvWzTT3hyAIwv2xIhIMOkDh4YDb2dmjQs3fiDqKzUIlJycHPj4+jrSFIAjCcfBFAqM0N1NjHSQA7NKZlheaIqFC1FFs9neSSCEIolbDFwlKtXnZUXkq9hAqfI+KowQVQbg51JOZIIi6AV84KHmhHocJFTuUJxso9EMQJFQIgqgb8IUKv3mawwSAPTwq/NCPAyuUCMKNIaFCEEQdwQ08KrJzVCj0QxCyhIpOp4NKpcLJkycdZQ9BEIRjEOSoOEOo2KE8WS8qTzbIFDoEcRcgS6ioVCrExMRArydlTxBELUMgVPihH2d6VOTmqOgqXyeIOoDs0M+bb76JmTNnIjs72xH2EARBOAZBjgq/6sedc1REHhUK/xB1ENkt9OfNm4eLFy8iKioKMTExFmXLycnJdjOOIAjCbji9PNnOVT8AeVSIOolsoTJixAgwNHOCIIjaRm3ro8KyEqEf8qgQdQ/ZQuXdd991gBkEQRCOxlrVj6M609aw6kfKLrmhI4K4C5CdoxIfH487d+5YbM/NzUV8fLxdjCIIgrA7/Ie8ohZ4VKQGElLoh6iDyBYqaWlpklU/ZWVluHr1ql2MIgiCsDuCzrSuSqaVkaMiTqQFKPRD1ElsDv2sW7fOtLxx40YEBASY1vV6PbZs2YK4uDj7WkcQBGEv3KGFvqwcFQlRQh4Vog5is1AZOXIkAIBhGIwfP16wT61WIzY2Fl988YVdjSMIgrAbtS2ZVqq5G5UnE3UQm4WKoeKPJi4uDocOHUJoaKjDjCIIgrA/1kI/blqeLOlRIaFC1D1kV/2kpqY6wg6CIAjHYjWZ1k1zVKSEDgkVog5iczLt4MGDkZeXZ1qfNWsWcnNzTet37txB8+bN7WocQRCE3bCaTOumOSqS5ckkVIi6h81CZePGjSgrKzOtf/LJJ4I2+jqdDufOnbOvdQRBEPbCLXJUaupRoWRaou5hs1BhRX9g4nWCIAi3xur0ZIkyYHvfr7JtVs930xyVq0eAU3+4hy1EnUB2HxWCIIjaCe/LlUpjXpbqV2Lv+5k2yREqblj1c/sC8F1fYPUE4MBC19pC1BlsFioMw1jM+KGZPwRB1Br4D36Vl3lZV2Z5rL3vV9k2a0iVJ0ttcyZn/4ZJgO341KWmEHUHm6t+WJbFhAkToNFw30RKS0sxadIk0/Rkfv4KQRCE2yEQKnyPiqOEilR4vIY5Kq72qPApzXW1BUQdwWahIm7yNmbMGItjxo0bV3OLCIIgHAFfOKj5HpVyx9/PtK2W56i4+v5EncRmobJs2TJH2kEQBOFYWGs5Ko4SKjVNpnWhR8VgADa8BhTdBgZ/BvhUNPikqiPCBchu+EYQBFE74QsVT/Oyo4SK8X6Mwiw65FRLSnkvnOXRuPAfcPBbblnjBwyfxy2XFznn/gTBw6Zk2kmTJiEjI8OmC65atQo//fRTjYwiCIKwO4IcFZ5QcXQyLaPkbaslOSpXdpuXk1eYl0moEC7AJo9KWFgYkpKS0LVrVwwfPhwdOnRAVFQUPD09kZOTg9OnT2P37t1YuXIl6tevj2+//dbRdhMEQcjDmlBxdDKtQmnu1VLjHBUnVf1YE1Tlhc65P0HwsEmofPDBB5gyZQqWLFmChQsX4uTJk4L9fn5+6NevH7777jsMGDDAIYYSBEHUCNZa6MfBDd/4HhU5VT+unJ5sLRdFW+Kc+xMED5tzVMLDwzFz5kzMnDkTubm5uHLlCkpKShAaGopGjRpRTxWCINwbvjdD7YTQj1GUKHgfszVNpnVWjgr/NVE4YdwAQVRCtZJpAwMDERgYaGdTCIIgHImTk2mNQkOhsNxm0/kuHErID/Hw5yI5rIsvQViHWugTBFE3sNbwzWHJtMaqH34ybS3xqJTxhArfo+KwCimCsA4JFYIg6gbWWug74uHLspAO/dSwPFmO0KkJAo8Kz34K/RAugIQKQRB1A2c2fOPfSyHhUSnNA77tBcxtBWSdsXINV+aolPJWePmH4tdKjvAiiGpCQoUgiLqBtaofh4R+ePeSCv2c/B24fhTIvQLs/NzKJVyYo8IXJIJlUY6Kszw8RJ2GhApBEHUEZ3pUeA9wfjKt0YbMY+ZNp9dauYaEt8JZHhW+IOHfUyxUKBREOAHZQuXmzZsYO3YsoqKioFKpoFQqBf8IgiDcEqsN3xwd+pHIUeH3I/Hwlb6GZI6KCzwq/HsaSKgQzkd2efKECROQnp6Ot956C/Xq1aP+KQRB1A4EXg4lV81i0Dom9MO/l1Top6zAvE3jV/U1jLjEo8ITI2JRR0KFcAKyhcru3buxa9cutGnTxgHmEARBOAi+l4NRcOGfcq2DSm6rSKYtyTFvU3tbuYQLq36shn5EwsRZwomo08gO/URHR4OlTG+CIGobAi8HY25k5ugcFamhhPzhftbEh0s9KvzXhDW387cI/ZBQIRyPbKEyd+5czJgxA2lpaQ4whyAIwkGYHvwV4WplRUKtzgXlyfzyX2vzc1yaoyKu7qm4L4V+CBcgO/TzyCOPoLi4GI0aNYK3tzfUarVgf3Z2tt2MIwiCsB/GTrEV38+MHhWxl8AutxLlw4i388WJzopQcaVHRSppVqmWCP2QUCEcj2yhMnfuXAeYQRAE4WBM04wrPCpGAeGIh7+10A8kqn74D3uDwVzOLCVUXFH1A5hfI/KoEC5AtlAZP368I+wgCIJwLKzIo2IsG3bIw9ZaebJE6McoAvZ8BWz/GOg2Deg1Q1pAOcOjYjBYvibGdcpRIVxAtaYn6/V6rF27FmfOnAHDMGjevDmGDx9OfVQIgnBfrAoVR3hUqshREXhU9Nzxm97m1rfPBnq8bMWj4oRCBqlQGGuosFNkE3lUCCcgW6hcvHgRgwcPxrVr19C0aVOwLIvz588jOjoa//zzDxo1auQIOwmCIGqGOJnWkR4VcSk0f7teK2qipgO0xcLzy/Jd10JfnEgLcDZKbXdWKIqo08iu+pk6dSoaNWqEjIwMJCcn4+jRo0hPT0dcXBymTp3qCBsJgiDsgNijYsxRcYRQsZZMy1qKEoMOKL4j3Faa57pkWqlybYPeynbyqBCOR7ZQ2bFjBz799FMEBwebtoWEhODjjz/Gjh07ZF1r9uzZ6NixI/z8/BAeHo6RI0fi3Llzck0iCIKoGotkWiflqIg702pLLY8tui3cVJrnuvJkax4VqdeJhArhBGQLFY1Gg4KCAovthYWF8PDwkHWtHTt24IUXXsD+/fuxadMm6HQ6DBgwAEVFRVWfTBAEIQdrOSr8hmZ2u1cl5clSngmxUCkrcJ1HRTJHRW9FwFDoh3A8snNUhg4dimeeeQZLlixBp06dAAAHDhzApEmTMHz4cFnX2rBhg2B92bJlCA8Px5EjR3DvvffKNY0gCMI61jwqAOcZUMj7olX5vaxU/YCV9kKUiPpP6ctcV54s6Tmh0A/hOmR7VObNm4dGjRqhS5cu8PT0hKenJ7p164aEhAR89dVXNTImLy8PAARhJT5lZWXIz88X/CMIgrAJi2RanqfD3g9cQR8VhXC7lBeiTOSl1muteFScMOvHWlk0hX4IFyHboxIYGIg///wTFy5cwNmzZ8GyLJo3b46EhIQaGcKyLKZPn47u3bsjKSlJ8pjZs2fjvffeq9F9CIKoq1gL/cABD1xrVT8SPUoA4ewfgBMqrspRkRRIOqGw428nCAdTrT4qANC4cWM0btzYboZMnjwZx48fx+7du60eM3PmTEyfPt20np+fj+joaLvZQBDEXYwp9OMEoSL2qDAKbhtrkBYbYqFi0Eof55QcFSsCSdLT4qRpzkSdxiahMn36dHzwwQfw8fERCAUp5syZI9uIKVOmYN26ddi5cycaNGhg9TiNRgONRiP7+gRBEJXnqNhZAIgnNTNKc9hH0qNSKFzX61yXoyIpkHSiUQC87QThYGwSKkePHoVWqzUt2wuWZTFlyhT88ccf2L59O+Li4ux2bYIgCAHGaIy4jwrgAI+KKPSjUFZ4SayFfkRCxWAl9OMUj4pULooBULhwmjNRp7FJqGzbtk1yuaa88MIL+Pnnn/Hnn3/Cz88PN27cAAAEBATAy8vLbvchCIKwSKZlnJRMC8Z8L4OVEEqZ2KNSLt0u3ylVP1Y8KgbyqBCuQXbVz5NPPinZR6WoqAhPPvmkrGstWLAAeXl56NWrF+rVq2f6t2rVKrlmEQRBVIGVzrSAYwWA0aNivI/NoR8X5YRYCzm5ysND1HlkC5UVK1agpKTEYntJSQm+//57WddiWVby34QJE+SaRRAEUTniZFqBR8XROSoK832k7iWZTOuqPipWPCqSs4comZZwPDZX/eTn55uEREFBATw9PU379Ho91q9fj/DwcIcYSRAEUWMskmklphrb7V4SOSqADI+KC3NUrFUbWRMwBOFgbBYqgYGBYBgGDMOgSZMmFvsZhqEeJwRBuC+mFvpSOSoO9KiA4c0VsvLA14q81NYavrnMo2Kt4RuFfgjHY7NQ2bZtG1iWRZ8+ffD7778Lusd6eHggJiYGUVFRDjGSIAiixlh0puU3YrP3A5fvUREn00o88HWiQYWs3oV9VCTss2oPeVQIx2OzUOnZsycAIDU1FQ0bNgRj/FZCEARRKxAl0zozR4Uf+pF64OtEc3QM1vqoOCOZVkboh8qTCScguzPtlStXcOXKFav7aZggQRBuiUUyrcJyn73vZbyPIJlWwguhLxOuG/TSFT5O8ahQ1Q/hXsgWKr169bLYxveu6PX0xiUIwg2pNJnW3h4Vmcm0NntUXJhMK9XwjYQK4QRklyfn5OQI/mVlZWHDhg3o2LEj/vvvP0fYSBAEUXPEnWkFoR9He1SMOSpWpidb5KhYmQnkdrN+KEeFcDyyPSoBAQEW2/r37w+NRoOXXnoJR44csYthBEEQdsUimdaRHhWRUDFV/eisJ6vyMehclxNirYU+Y4PdBOEAqj09WUxYWBjOnTtnr8sRBEHYl8pyVOyeTFtZ6MeGexn00qEfV/VRYfUAK+GAp9AP4QRkC5Xjx48L1lmWRWZmJj7++GO0bt3aboYRBEHYF1EfFWd6VKpKphXjyk6wkkm81qYnk1AhHI9sodKmTRswDANWNDDrnnvuwdKlS+1mGEEQhF1xVQt9MFUn04ox6CDoxWLa7sJkWgr9EC5CtlBJTU0VrCsUCoSFhQla6hMEQbgd4s60Dh1KaKXhG2uwTaiwBveankwN3wgXIluoxMTEOMIOgiAIx1KpR8XBVT98UaQvtzxejEEHU9Kvtes6CqseFSpPJlyD7PJkANiyZQuGDh2KRo0aISEhAUOHDsXmzZvtbRtBEIT9EFf9OLPhm4L3nVDcM0UKg7u10LfiCSKPCuEEZAuVb775BoMGDYKfnx+mTZuGqVOnwt/fH4MHD8Y333zjCBsJgiDsgKiFviNn/VhLpgUsu9BK4cqGb9Y60LqqpT9R55Ed+pk9eza+/PJLTJ482bRt6tSp6NatG2bNmiXYThAE4Ta4KpmWP+sHAHQ2CBVWD0hpAHuHqCTvba2FvlR5MnlUCMcj26OSn5+PQYMGWWwfMGAA8vPz7WIUQRCEXWFFya2Ac1vo80WRXlv1+VY9GC70qEiGfihHhXA8soXK8OHD8ccff1hs//PPPzFs2DC7GEUQBGFXxMIBcKJHRZxMa0voxx0bvtH0ZMI12BT6mTdvnmm5WbNmmDVrFrZv344uXboAAPbv3489e/bgf//7n2OsJOoE528WIMBLjQh/KnUn7IxYOAAij4q9k2nFnWnlJtPqhPaZruvCFvqg8mTCNdgkVL788kvBelBQEE6fPo3Tp0+btgUGBmLp0qV488037WshUSfYcf4Wxi89CE+1Arte7YMwP42rTSLuJsQN2AAHt9CvJJlWPIBQ8nxRq31GUVF548qhhFLHUjIt4XhsEiriJm8EYW+mrTwKACjVGrB8bypeGZgIlmXx8YazyC3S4q1hzeGrqfztmlesxQf/nEakvyf+N6AJGEaiDwVRN6nSo+KkzrSA7aEfBc8mhZo7zyl9VKyEnKQSBcijQjgBuw0lJOoOZTo9xi89iKyCMqx4ohOig72tHptXosX8bRexaOdlwfZhraPw1SNtsOpwBr747zxyi80JhoWl3Iff+hM3sGgHd16JVo9T1/MQ7OOBHyZ2hqfa0i0+Z9M5/HbkKgBg8a7LCPXV4KtH26BDbHCNf2aitiORTOvIHBVrnWmB6iXTKj04oeIqj4o1QUI5KoQTsEmoTJ8+HR988AF8fHwwffr0So+dM2eOXQwj3JdfDqRj/+VsAMDbf57Esic6AQAu3SrErvO30C0hFI0j/HA1pxh9v9iBMp3lN7S/jl3H+C4xmLnmhMU+nYH7kN9y9qZp27pj1yvuUYTfjlzFmHuEHZLPZOZjxb4rpvUynQHXckvw5PJDOP7uwBr+xEStR1wuDIgavjkxmdaW8mSDTigYlOqK67owmVYy9EMeFcLx2CRUjh49Cq2W+xaQnJxs1aVOrva6wZnMAtPy9vO38PnGc1AwwI8H0pFdVA4/TxX2zOiDLzddkBQpRraczZLc/tOBdMwa1RKMVAtxANdyS0zLF24WYOmeNPxyMF3y2PxS+iAl4IJkWnGOiswW+qzYo1IhVFzmUbEW+iGPCuF4bBIq27ZtMy1v377dUbYQtQQ9r6KBZYFvtl0U7C8o1eFoei6u3Cmq9Dp7L962uu9iVgFKtNIiI9BLbVqeseYEjlzJqfQ+pVo9Jv98FGU6Pf5vdDv4e6pRUq6HRqWAQkHiuk5QZXmyM1voV6MzrdKj4rqubKEvcSx1piWcgKwcFZ1OB09PT6SkpCApKclRNhFujk5f9YfT+KUHqzzm2NU8q/tmrjmBQ2nSAqREy31Y/3IwvUqRAgDP/XgE287dAgDM3XQB/ZqH44llh+DnqcI3j7dD57hgpGcXo7hcj2b1/Ku8HlELcWUyLaMQtuu3KZnWILyGUei4qjOtQQ8wEtOcKfRDOAFZQkWlUiEmJgZ6Pbn76jI5xTYkA1rBU61Ai6iAKgWGNZECAHM3X0DrBoGS+S1SGEUKACzdk4qle7gqtrLCcjz67X483SMOS/ekQW9g8euzXdApznry7cWsQmw4mYmHOkRTv5fahEvLk0XJtLb2URHkqDjTo2KtsZuUUKFnAeF4ZHemffPNNzFz5kxkZ2c7wh6iFnAz34Y+EFZYOr4jnrk3vsY2TFxxqMbXMLJ4Vyr0FQm8Dy/ahzKd9IevwcDiqRWH8Pl/5/Hwon0o1dKHdK3EKR4VccM3meXJ4hwVk0fFRcm0Br28aiCCsCOyy5PnzZuHixcvIioqCjExMfDx8RHsT05OtptxhHuSVWDDB62ICH8NFo3tgDbRgTh9veYzoQwSX+7sRdM3N6BVgwCseKITcku0CPX1gJ+nGieu5SHtTjEA4MqdYiS+tQELx7TDoKR6jjOGsA9SoR+HttCvZNaPrR4Vo2Dgh45c6VFx1ewhos4jW6iMGDGCqnvqMHklWmQXWf+g9VIrTTkkfPbP7Gt636iV1t8/J98biKR3Ntbc0Bpy/Goe2n6wCQAQG+KNPyd3x+YzNy2Om/RjMtI+HuJs8wi5SJUnOzVHpQazfhilWei4zKNigGQRHoV+CCcgW6i8++67DjCDqC28tCpFcvsD7RqgRKvD1L6NMWjuLsE+jUohELcqpfWIo4+HEgFeauSVVD8Pxt6k3SlG6/f+c7UZRE1wadWPqDOtTR4VvdkmvtBxqUdFQqmQUCGcgOwclfj4eNy5c8die25uLuLja557QLgvWr0BW630Pvn8oVaYP7o9EiMtq2aWPdFRsK6qpCSYYRjEhfpYbP/q0TbyjK2Clwc0wcIx7exyLaOHqVSrR7nOgNzicnyz9QJiZ/yD2Bn/oMenW3HkSjYKSs3iy2BgkVOJZ4qwM5IeFd7H35FlwF8vAsV2yr0TJ+8y1clRqRABCqVjRZXFva1U/UgOK6QcFcLxyBYqaWlpklU/ZWVluHr1ql2MItyTy7ek+6IEeasFHpOvH2sLL7US3RJCsOV/PdG1UajgeHUlHhUAmNo3wWLbiDb1MaRVzXJBPn2gFcL8NEgI98WEbnHo2yyiWtd5a2hzwfqvhzOQersIfb/YgSZv/os272/C5/+dN+3PyC7BAwv2oeW7/+Hjf89i78XbaP/hJrT9YBPmb78ovjwAbm7RljM3KWHXXlRV9VOQyYmVjW/Y64a82ynMVTuAbQ3f+H1UxKEjR3tVJIWKTvq+lKNCOAGbQz/r1q0zLW/cuBEBAQGmdb1ejy1btiAuLs6+1hFuhVSOBgAoRR6SYa2jMCgp0qogsZajsmwC53npkxiBZ++Nt5gP9M7Q5vjneKbN9nZtFIK9l8zev+ZR/tg3ow+UCsYkrN4a2hwf/H3a2iUkGd8lBtdySkxlzh//exYf/3vWpnMX7riEhTsumdaX70nD872EwqxUq8dDi/bi/M1C9GgcioVj2mP53jS0iQ5Et4RQ8SUJm6gi9GPk2M/AqAV2uJ0oR4UvVGyBX2XDiD0qenOnWkdAoR/CzbBZqIwcORIA55ofP368YJ9arUZsbCy++OILuxpHuA9f/HcOX2+V/vavkEiursxrIpWjEh/qg96J4ab1yABzj5JwPw33v78n3hzSDB/+c8Ymm+NCfQRCxVejsri3p1qeUzE62AsqpQI+GomHXDXIKigDy7JgWcDAsnj19+NYk3zNtH/XhdtoUZFc7O2hxJ7X+iDAS11pR13j9ajrLo+qGr45+n5yhQU/mVYhahjncI+KlfJkKUioEE7A5k9pg8EAg8GAhg0bIisry7RuMBhQVlaGc+fOYejQoY60lXARGdnFVkUKIC1UKkPKo9IhNkiw/mjHhqgf6AWNSoEFY9qbtovzWxIj/dCqQQCkCPcTNmTz0Vjq8no8QdQ43FfyOs/2jDfZ/fVjXF6LRmXbn86JdwdgUIvISo+5f8FetPtwEz7775xApIgpLtfjnXWn0OztDXhqxSFT7xc+eSVaDJq7C/fM3oLLtwptsrFOIDmU0IpQYe1Q+15jj4qoPNmRzeks7i3lUTFIh4Qo9EM4Adk5KqmpqQgNFbqfc3Nz7WUP4YZsPyedQGtEHPqpCpXC8m332qBEwbqXhxLbX+mFg2/0Q/sYs4hRiwTC2RsFsIaH6FhfCaFyb+Mw9EkMR4sof4ukXyOtGwTizPuDkPxWf7SJDgQAaFRVfxtv3SAAfp5qLBzbHj0aWw/ZHE3PRW6xFot2XLZ6jJF1x66jTGfA5jNZmLDsIAw8sXIoLRudP9qMczcLkFVQhr5zdoC1x0P3bkCq6seaR0VbbIf7iYSRXI8Kv2+JOPTjKo8KNXwjXIRsofLJJ59g1apVpvWHHnoIwcHBqF+/Po4dO2ZX4wj34JJEEu39beublt8b3kLW9cQelQldYxHiq5E4ToEAL+EHvFpC5FhjRJsoDK1IwI0L9ZEM86iUCiyd0BH/TO2BBkHe+GFiJ9zfrj6GtY4CwPWF6dooBF4eSvh5mm3RWAkZffpAK6x4shNGtonChyNbmrY3j7L/DKFdF25j5wVuPEBGdjEeX7wfpVrzA5JlgbiZ6xE74x+M+GY3MrLt8ACurVTV8I1PmXXxa/v9KkmmtQWDTro8WXxtRyBVVcSKqn6c2SmXqPPI7qOyaNEi/PjjjwCATZs2YfPmzdiwYQN+/fVXvPLKK/jvP+o3cbfAsixuF5Yjv9Syp0mH2GCMaFsfJeU69G0WLnG2dcQNA709bM8VUKssvTf8La0aBODJbnGIDvZGVKAXPhyZhK6NQtEtIcSmRoU9GoehR+MwlGr1uLdxKJpE+CHQ2/Ih4yHKdXm0YzQ6xwdjWKsoqJQK9GwSJtg/sVscvuO16geABkFeuJpTUqk9rwxsikZhvnhl9TEUlFl+e/3lYDreXXfK1DHXGseu5qHHp9wU9I0v3oumkX6VHn/XIXi4S5Qn8ykrBGr68tRYqPBzVCSSaR2J1RwV3s+k1FjOIyIIByFbqGRmZiI6OhoA8Pfff+Phhx/GgAEDEBsbi86dO9vdQMJ1vP7HSfxyMF1yn6fa8mFcXaRyR6whDht1SwhBYamOt5/BSJ63J9DbA493bijbJk+1Eg91iLa6X+xRGdgiUpAMLCbc3xOH3uiHz/87hz+Sr2FynwQkRvph4orDVs95fXAinrm3EQDgem4J3peoTtp4SroSqzI+23gW342XDnPdvdhY9QMAusrFo223E+eoyHVes2YPhrPLk61W/fCFihrQOsEWgkA1Qj9BQUHIyMgAAGzYsAH9+vUDwH37pqnKdw+5xeVWRQrAPcjthZeMa4nDRrNGtjQnRzoRcY6Kn2fVYivYxwMfjWqJU+8NxAu9E9C3WQReHtBE8tjtL/cyiRQAGJRUeUKukfgwH6R9PARLJ3RA83rS4abNZ7Kw6bR8gVOrkVP1Y0ufE1n3Y+R7VPh2ODuZVrKPiiiZ1vjzUI4K4QRkC5X7778fjz/+OPr37487d+7gvvvuAwCkpKQgIcGyURdRO+GX9Upha9WLLcgp9RWXPceKutg6K3VU/PPz81eqgl82PLlPY8ljgnyED7YIf0/J48Q82L4BAK4XzfppPZD28RCc/WAQJvcW/m2+vPqY1SnRdyUC4WD838p7WG+H8Q22VP1UJV6MdjAKc04I4HhxYK2xG18gqSpyyij0QzgB2U+bL7/8EpMnT0bz5s2xadMm+PpyJZ2ZmZl4/vnn7W4g4RpuF1be5tuuHhUPGaEf2S50xyD2qAR5V78Bl7FPDB8/UTisqsqqVwY2xfInOuKZHpZjLDzVSrw8sCmOvNnPtC2vRItzvIqpwjIdjl/NFVQR3VVUNeuHj709KrBS9aOqQnwa7VAohaLG0UJFsrpHLxQwxp+HQj+EE5Cdo6JWq/Hyyy9bbH/xxRftYQ/hJhRKJG7yqWxej1x85CTTStyXv8VZ1bji0mephFtbWTS2PV7/4yQAbgbQwx2jJZu19U0MxxYrs5aGtKxn4V0SE+KrweuDE/HReq6L7rGreWjVIBB6A4vh3+zG5VtFeHlAE6tenlqNs0M/lbXQN6LyBMryrV/CwPOo8IWOXeyrBGst9E0wVPVDOBWbhMq6detw3333Qa1WC1rpSzF8+HC7GEa4BpZl8X/bLgpm1UgeZ8d7esvwqIj7qADA64Ob4eFF+wAAM+9LtNjvCMShH7FwkUPbhkH4d1qPKo+bObgZgn080L95BN776zSu5ZqTPr1sFHtNIszlLLfySwFwibrGOU6f/3cez/ZshLmbzyOnWIv2DYPwx9FraFbPD68OSqxyTpPbUtWsHz7OCv2obQvngVHKnxVUE6wl0xpRKEmoEE7FpifEyJEjcePGDYSHh5ta6UvBMAwl1NZy9l2+U6VIAezruZBTnizlyekYG4Tvn+wEAOgUF2w3uyrDWh8VR5IQ7ovPHmoNAPhkg3C2kK1ChV9WrasI84jDfG/8cQK/HuYGjP58gEuo3n3xNhQMg5mDm1XPeJcjo+Gb3ZNprbTQV3pwD/yqQjkWQw3tIKQqQxDi8eBeD35vFX4DOkqmJZyATULFwHuTGhw9YpxwKUfScmw6rkGQl93uWZNkWoATyPfaqVS6JnY4E3GOkK2VU/xcF2NPlzuFwgezUaSIWbTzMhoEeWFsl1gZlroJchq+6RwhVCQ8KgqVuR9JZSicHPoxeUkqQjz6cmF5skJlFnmUo0I4gVrqxyXsQalWj682X8D3+9JMrdZ9KymzXfZERwxqEYl3hjVHdLC33eyQk0zrgkpkSXR61yadioWJrcJJxSvvNnpU7hRVnjjNZ86mqr1tbonUrB+HelT4Hhwr5cmM0rbW+s4O/RjFB7/RHD+ZVqE0v3bkUSGcgE1PiHnz5tl8walTp1bbGMJ5lGr1+Od4Jr7czD14Ar09MLx1VKVltomRflg4tr3V/dXFW0YFkdQgPleQEO6L6GAvZGSXWMwpcgb8UI8c8abkNczLKijD2CUHsOvCbcljE8J9MbRVPXiqlfj4Xy7UlFOsxYmreWhpZRCk2yJoTOuMqh9xMq3E35W4msca4uPkhn5unARunwOajQCUNnzks/zW/RWvFd+jwihEnXIN1rv8EoQdsEmofPnll4L1W7duobi4GIGBgQC4oYTe3t4IDw8noeLGGAwsjmbkYvu5LMzffknw0J/6y1HcEx8M30rCMJ42DOKrDrbmVwDuI1SUCgZ/Te6OC1mFaN8wqOoT7Aw/9CPHycTP8fnr2PVKj+3bLBwv9uMa0hmFCsDlx/z4lG1dqIvLddh36Q7KdAY0ifBDgpUJ1Q5HTtWPPbwEtjR8U6hsEypiz4scIZWfCSzuzZ3TYSIwdE7V55hmDIk8Kka1x0+mBbjXS1H9qjeCqAqbZHBqaqrp36xZs9CmTRucOXMG2dnZyM7OxpkzZ9CuXTt88MEHjraXqAFfb72IBxbsxddbL0o+8PvP2Yn8Eusf0nIERVX88vQ9aN0gAG8NbS6rJ0tMiLkEt2ujELvZUx0CvT3QMTZYspTY0QiEigyXikpZ+bH3t6uPCH8NOsYGYRwvF2VclxjT8olredhy5iZ+PpCOcp35gVxUpsOS3anYe5Hz0BgMLJ5YdggTVxzG8z8lo9+cHZi7+Tx2XbiF2f+ewZEr2TbbXWPkVP3YXahUlqNiQ+hHLGjkCJW0XebjDy+x7RypEA+rFwoYZ7b0J+o8svuovPXWW/jtt9/QtGlT07amTZviyy+/xIMPPojRo0fb1UDCPvyw/4opzGONvBIt/j6RaXW/PbvRdmkUgj8nd5d9XrCPB74d2x4HUrPxzL2Wzc3qCp7V/F1U1v9m00v3ojGvfJnP1L6N8f2+KwC4MQbGGUVlOj2e6BYHAFi86zLmbr4AAEiq74/6gV44kCoUI8b9ALBox2UMaB6BOY+0ga+MeU/VQ5QzAjivPBmMdCmyM0I/N44L1/XaqsWRMZlW4FExQOhRceKQRKLOI/vTLjMzE1qt5R+KXq/HzZt1bH6Im3OnsAx5JVqk3ynGW2tP2nyONeR8c3ckA1pE4q2hzW1uK383Uq43PwjllHcrreQS/PlCN6siBQBCeC39b/OqhN77yzwokS9CTl7Lt2lg4n+nb2LF3rQqj6sxTg/9iPqOqCWSz6VCP0rLLsU1avhWeEu4XpJb9Tkmj4pC5FGREDAAJdQSDke2UOnbty+efvppHD582FQpcvjwYTz77LOmAYWE6zl7Ix/3zN6CLrO3YMd56W6mUly5U+xAqwh7kV1kfliF+ko83Kwg5VFpGuGH1tGBlZ7HMIys4ZFijr87APfEB0uOAth5/pbEGXZGqurHWjKtPR68/GsYy3nFLfOVHoBKJFRUEr9LC4+KDKFSLJrZVWJDuE3So6IXCRiV5fEE4SBk+1uXLl2K8ePHo1OnTlCrOZWv0+kwcOBAfPfdd3Y3kKgeb/95Clo9C61ej882nrP5vKpa5xPuAd+rEeJjeyKjVI5KdLBtPXE81QqUaKUfSnoDCw+lQuDpMTK1TwL8PdVY+UwXAFz347mbL+CrLZwHJq/EwQ3MuJual53hUeH3mzI+1NXegK7UvF2ptvSoqDSA2KlpkaMi4/WyECo29EkyijqF0lzNY9DBHPpROXdIIlHnkS1UwsLCsH79ely4cAFnzpwBy7Jo1qwZmjSRHldPuIa020Wm5fxS+iC524gJ9saZTG5OTFJ920uFpTwatvbE8VIrkQPph+SN/FJJkQLAVDlkhGEYvNS/Cf46dh2XbxdZePGOXMnGjN9PILdEi5JyPQrLdOjZJAwfP9AS9QKq2WhQTsM3e+SoCDwqFffx8BF6NKSSaSVDPzWo+hELlWIbPCosP2m24hHB6s1pPoxSWOZscILQJOo01c5ga9y4MRo3vguHl90lyE0nUTCAm1T+EjYwc3AiDl/JgbeHEtMH2P4lQSWRoxIdZJtQ8awkF+bKHbMwHtQiEhtO3YCfRoUfn+pstSrK2FywTGf20pSU6zFtZQqu5pQIjt1x/ha6zN6Ktg0D8UKvBNzbJEzefCWpqh9rvT/sHfpheEKFj9JDwqMiVR1Uk9CPSJiU5lZ9jin0o7CeTOvMBnREncfRqfaEi6hqFk/9QC/BULtRbRvg92Tp1ultGwZiWl8Spe5ETIgP9s7oA5WCkVUeLeVRaSjDo2KNjGyzV6RrQggWjGkHrZ6tVEwYk7P5AvmH/WkWIoXP0fRcPPX9Ydzfrj7mPNzGJrs5JEI/1rB7Mi0v9MNHMvQjkSBe3Vk/ujKgvEC4rbxI+lg+1pJpTQ3flICC7+Ehjy3hWKid4F2IwcAit9j6h9mzPeOxbnI3wbY3hkgPmwv11eCP57uhV9Nwu9pI1BwPlUJ2Dxe1ZI6KjR6VSoQKP3wTHewNhmGq9HjwTTcm5vO75G54sQfeHtpc8tw1yddw/maB5D5JpEI/1rB76KdCqIg9Kgq1ZehHMplWZXvop+CG2X6pMI/Wugg0YUsyLYV+CCdCQuUu5FZhmdV8AQDw9VBZzPQJ9vFAgJdlf4V74p0zjZhwDlIeFVsHTFrzqJy/WYD52y+Z1iNtLBtX8OKTLMuJlRPX8gBwArlphB+e7B6Ho2/1x8f3t7QQWQPn7jQJnCoRz96pDLuEfkTlyYCNHhWJ34WtoZbdXwJfNAWWD+HuL85PAQCtDVV9goZvvBb6fAFDoR/CiZBQuQupzHUOAD4aFTQS7fCDvC2FirVvtETtRJyjEunvCR8bm61Z86hM+fmoYD3I27YqJL5cMLAszt4oMHkCWzUIMIWGgnw88Ginhjjz/iD8NqmL6RyWBf46zjUo3Hr2Jv47dcP6zaSqfqxhDw+BlFDxkBIqIg+KlEdFLAysTXfeNpv7P+MAkHVaWqjYEvqx1kJfIGAo9EM4D5s+oY4fP171QRW0atWq2sYQ9oGfL+CnUaFAVHJs7AIaE+KNK3eK0TmO85oE+XggjefC/7/H2yG8DjdVuxsRO1SGtqpn87nWRiicE4VgAiUEr7QtPI8KgG3nzP1+ejYJszhepVSgQ2ww4sN8cPkW98Cd+stRzPz9OIrKuYfokvEd0KpBIOZuPo/ESD+MuSeGEzz8nJEqPSp26AsiFfpRS4R+LPqoWOlgyxcw/BJnI2WFgJ5X15ybzuWoiLEl9CPVQl+Q40NVP4RzsUmotGnTBgzDWHWzGvcxDAO9npr/uJpDaebY9NP3xmPOJmHrfOM36B8ndsbWs1m4LykSgOU3YSX52+46xN2F5QwJtLXNva2zm4ymBCEfOPoDim6b5wm1qmQ68ysDmuK5n5JN60aRAsDU2t9IkI8HhraKEnk4qvg57J2jYrXqRwUoRNusNXxT80JCUkIlJ1W4nndNWpDZEvqx1oGWbw+FfggnYtMnT2pqatUHEW7DdV41z+OdG+LsjXysP2F2i3uqOQUSHeyN8V1jTdvFOQgKN2mZTzgOOYMmg31s85TYivHt9Yl6MdR/H8FT6gh8h09QBo9KRVHTSOut/sVMX3UMA1tEQi3l4bCG3XNUjMm0otCP2MMCWKn6EQkVKbEhDvMU3pDuyWJT1Y8x9MNIN8VTqCj0QzgVm4RKTExM1QcRbsPNfM7lq1YyCPb2wPzR7RE74x/TfqmESgAWVRrWjiPuHuRMrrY198RWFAwDNXQYoDzCXV97E+0UF7DP0KJSARUf5oupfRLw7a7LKNVaTxoHuJlIS3anYlKwFaEyciHw94tAfC/g/AZum6PKkzUigeXhDWGmDqx7VPgCRivhURFX+BTctPTgAPJDP1L5PAxV/RDOpdp9VE6fPo309HSUlwvdfsOHD6+xUUTNyC3mfieB3h6S5atqKzEdD9F2uaWvRO1DzkBDW4TKBJ6HrioUDINg5Au2NWauYh9awMej8o+m6QOaYvqApjiTmY+hX++GvpJuhR//exYjhxQi0riBH85o8xjQ8kGgNB/4rGIat91n/VT8XXmHCI/x8IGlULHmUeF5Y6TEhniGT+ENwEMirFdV6IdlRZ1pKfRDuB7ZQuXy5csYNWoUTpw4IchbMca+KUfF9Rjn9fDd574alWl7hL/0EDsLjwqFfu565AwaDLIh9DNzcKLN12MYIJgRJuKGVKzbGpJqVs8ff77QDQWlOnh5KHEmMx8z15ywOG73+Zt40Lgifvgq1cJtjuqj4iUq9Vf7WNpirY+KSgNO1LBWQj9SHpVCy+OqFCr8GUVWclQsGr6RR4VwLLLTJadNm4a4uDjcvHkT3t7eOHXqFHbu3IkOHTpg+/btsq61c+dODBs2DFFRUWAYBmvXrpVrDiGCZVlTcqGPxvwh8+NTnbm+FN3ikBAuHeOn0E/dw56hn6l9G0uWvVuDYRgEM0KPShAKoFQw0Mhoj59UPwBdGoWgTXQgHuvUEM/1aoT4MB+E+5kf+mev84bxSeWo8BqqsXot1h69hoOp2TianoNvtl7A6ev5ludUBj9Hxfiw9xYJFQ9vy/CMZNWPglN1xjwVqWRaC6GSaU6w9Q4x58OUVyFUxHZLvVYK0ewhGkpIOBjZHpV9+/Zh69atCAsLg0KhgEKhQPfu3TF79mxMnToVR48erfoiFRQVFaF169Z44okn8MADD8g1hZCgTGcwucH57vM20YHY+NK9lZ4rFiqUTHv3IyeZNlAkVLzUSvRsEoYr2cXo1ywcU/okyLq3ggECIPSo+DNF8FYrLaqT5PDaoES8Nojz7Dy5/BC2ns1CcWk5YHy2Sj58zdsOXs7Ci2dTBLuX7E7Fnhl94F1FSMoEvzTY6CURe1S8gkUziGC9jwrACRVtsbRXRBz6KTZ3+EV4c+DWWUBbxP2rDPEwRanQT02GJBJENZAtVPR6PXx9udhnaGgorl+/jqZNmyImJgbnzp2Tda377rsP9913n83Hl5WVoazM/AGQny/zW04doIjXM8XWRl5GxDkq1faoXNoGrH8FiOkCDP3K+vA3wuXIyVERV+L0aByKhWPbV/veDIAgUejHE1p4a2y3qSr6NYvA1rNZUMLsKfj+wFVcu3EGMwYlmgURL5ShgmX4OqdYiwOXs9E7kRslcSwjF1dzSnCroBTf77uCrgkh+GBEkvl6xp4mCpX5YS/OUfENB8pEYwDE3WsB8/nGrrW2JNPyqdcayL1ScW4VybTikJW4xT9QMQOIQj+E85AtVJKSknD8+HHEx8ejc+fO+PTTT+Hh4YFvv/0W8fHxjrDRxOzZs/Hee+859B61HR0vqVAsPKrCMvRTTSM2vwvcucD9azMaaHhPNS9EOBo5OSp+orELfp41K1dWMAwCIfyGr0G57V4LG2gUxoU8+OLjcHo+1qVdhr+nGsev5qJ7QijGdomFgWWgYFiBqOHzxPJDOPhGXyRfycWkH48I9l2+XYSH2kejdXQgt8HYPZZfIiwWKn6RltNDxZVBAK9hnFGoSIiN0jxJmwEArR4BLm3llqsqT+YLFakW/4ClR4VCP4SDkf2J8Oabb6KoiHuzf/jhhxg6dCh69OiBkJAQrFq1yu4G8pk5cyamT59uWs/Pz0d0dLRD71nb4AsVpcQAusoQ5wVUK/Sj1wGZKeb1POmJzIR7ICdHRfz+8PeqmaBgGAbejLB7qie0srw8VWEUU0qYQyy6itS8zzZyHuCNp25iYItIBEAJDXRQWxEqANBp1hbJwY4AsP5kJorKdTiUmoNJZcXQAMJQjlIF9HwN2PEJJx40foCfKPQjVVJsCv1U5K/oJISKNQFSrw1Qr5XZU6Mt5lrkW/Ny8r0jCokW/0CFl4j3u6fQD+FgZH/SDBw40LQcHx+P06dPIzs7G0FBQTWKK9uCRqOBRiNdsUJw6PVmoaKSGbqxSzJt/jXhutS8EcJtkJO0Kv77DvWt2d+iguE8KHw8mXI7CxXuI44vVPSwvP5/p2/ifigB6KCEAa8MbIqeTcIwc80JnMnMF3wB0PL+xoxjKABg0Y7LWLTjMgDgIU0BohigUK9Efm4JogIrvCG9Xwc6TwK8gip+YFEHXsn8mYrfkVFs6Mu5pFd+/kh5RQhJ5ckJoKJb3HqvGdz/fAGkLQY0VjoS83uiKK2FfsTlyRT6IRyLLOe+TqeDSqXCyZMnBduDg4MdLlII29AZzB/IcoWGRR+V6vxOxa28Sai4HU92iwPA5ZjU5O+WX1VTHRgG8ILYo1IOLzuGfsxCxewl0Ul87L259iR0FQJGDR3GdYlBUv0A/DWlOza8KJ2E3qtpGHa80hsdY4Ms9nmAC4dklwJdP96K1NtFWH04A99svYBSdYCwvf3IhUBkK+ChFdJCxehRETR9E3lVjB4Vv0hgwj9A16nAhPVA04ocQH5PlcrCP2KPitUhiRT6IZyHrE8ElUqFmJgY6pXixvAbX7nEo5ItEiolufKvQTiUN4c0w6i29WW1opcirIZCRcEw8GKEHhUNyuEtIxxVFcYEYFUVHhUA0FZs9/MQ5t8EeEnn4kT4ccIh3M+ypFgD7oFfBs7z0Pvz7aZ9n/93Hk0j/PDtuPaICfHhms61eYzbeX6j5Y2MokDc9E0jIT48fIGwpsCAD4TXEHhUKhEqFjkqEj+7Uk2hH8KpyE6XfPPNNzFz5kxkZ1eSZW4jhYWFSElJQUpKCgBuplBKSgrS09NrfO26iiBHRWa1jbhjbbWESk6acL00V/41CIeiUDBo2SDAQpjKxd/KA9xmOxgGnqLQjwejs2voR6VUwEuthJLhe1Skr28UMF5KYYKrNaESXtE4UWoukUeFUCm38l3w3M0C9PxsO9LviEqNpcqBjXkigsGEPI+KXmfurSKV4wII5wzZ7FFRSeeoKD0o9EM4Fdk+1nnz5uHixYuIiopCTEwMfHyEfxjJyclWzrTk8OHD6N27t2ndmCg7fvx4LF++XK5pBOzrUalW6McYGzdSWTUCUetIjPTD2RtcPkR0kEQprRwkQj8alMPTjkIF4MI/qhKzUNFb+X5m9Kj4qIRCxZqgC/fnPCm+omqova/1huYrzjNRhsrF3I8HruD1wc3MG6Q6wUp5VPhig+8hsSpUbAz9CHJUrFT9WAgV8qgQjkW2UBkxYoTd8lF69eplasFP2AehR8UFoZ+i28J1Cv3cVXzzeFt8vvE8ejYNs0vox9Mi9KOza+gH4ISKR4k5pFHOSn/s6VkFwAAK1rbQtjFHR+xRqedr/rtpFBkCVOIg3n4uSyhUpDrTGvNE+KGeMl57/HJbhApve7lEa30j/EnICjWgkhIqanMFEmDboEOCqAGyhcq7777rADMIe6HnJdPK9ahoxKGf6gjS4tuVrxO1moRwvxo1eeOjYGAZ+rFzeTIAtG0YBE2O2VNgzcuhNX4c2jgNOMLoUREJFYbnYQjw88Ez98bjaHoOejQOw6+HM9ApLhgp6bm4fLsIl28VoVxnMH9JUEsIFaP3gt9jxVjlAwhFi9QgQkAkVGrqUVELvTtSLf0Jwo7IDlLHx8fjzh3LSo7c3FyHN3wjrHMxqwAXswpRUs6r+pHZR8Ui9FOdFAaxR+XOReD8f9W4EHG3wwDwsihP1spqQmcLQ1vVM+WMAEC5FaGiUBqFiqVH5bMHW0Gs+40eFU+16A9F0D7fE68PbobVk7piat/G2P1aH8x5uA2S6nNlyToDi9TbPOEg1ZnWKBb4IoTf0bbcBqEiCBtVMu/HIkfFSuinsgokgrAzsh9FaWlpklU/ZWVluHqVmns5kmMZuZi4/BD+TLlmsX3AlzvRb84OjFlywLRdrkdFPPelWjkqUuXIm9+Vfx3Ccdy5BOz4DLiy16VmcFU/ZRbbfdX2DQfXD/SCB8ML/VhxJMdGVJQZ60otOsY+1CEaF2YNFmwzhr7KdKKmbaW80R5SnWYBJNYzb09O5w1M5CfMGpHyqMgO/fBzVCoL/fCEozgXxbRdLUrsJY8K4VhsDv2sW7fOtLxx40YEBJgbFen1emzZsgVxcXH2tY4Q8MwPh3EzvwxbzmbhvqR6Jg/I8z8lwyDx2S636kc8HVd2joq2VPpDMOsUt0/KrU04F5YFfnyA63ejUAPP7QXCmrjEFIZhLBq+AYCPyr7tD8L8NAKPShkrPQWaMTZfM+i4h7+oKZr478FYJVdSLrKXn0Cu8Ze8V9dGoQC4zri7LtzCY50aolxnwP9+O4OvxQerpIQK36PCFyo1DP3wBx56eJNHhXALbBYqI0eOBMB9uIwfP16wT61WIzY2Fl988YVdjSOE3Mw3f/u8lluCuFAf07IUcj0qYqEi26NSWT7KtSNAbDd51yPsz61z5qZ8Bi2w81Pgge9cYgrX8E1CqCjs20AswEtt6msCSHtUPhyZBFwJNG/Y9425qyuPnk3CsOP8LQxrHWXaNrJtfXyx6TwA4P0RLYCyy+YTxJ1nK2hZPwDeHkoUl+tx6jrngdl46ga2XCwExHq+qhwVQejHlmTayoQK77NE7W0lmdaDPCqEU7FZqBgqkjTj4uJw6NAhhIaGOswoompu5JWahIo15HpExKEf2R4Vfn5K+wlARBKw/mVu/eJmEiquRlsKLBNNK7+83SWmAIACrEV5MgD4KO3rUeE8N9I5KoNbRmJkm/rokxgO3Aw0n7R9NtD6MSAoRnCtBWPa4ciVHHSICTZtiw72xs9Pd8a1nBKMbFsfOJtiPsFT2qOiVDBICPfF8at5SM8uRqlWj5v5pSiFhDAwTk22mqNix/JkvkdF7WU99KNQch45g5Y8KoTDkZ2jkpqaSiLFDSjVVv1hLtejIkZ21Q/fo+IdCjQbbu4LceI3y0mxhHPZMxcoETVqLLrlsl43auigZCzfE94K+zcQaxlp9gDwPSotogIwoEUkVEoF0GKk8KRjKy1t81ChR+MwC1HftVEoHuoQzYWDyvg5KtJCBQASwjnxwLLApVuF8PdUwwAFysTl08YQlC2hH2szfPgN36Q60yZ/D8xrC/w1zbxN7W294Rtg9qqQR4VwMLKFytSpUzFv3jyL7d988w1efPFFe9hE2IBRqOj0BqvHVKsPCg/ZVT9FvERan1DALwJo2IVbz0sHSiqSBkmwOB+WBQ4tkd6XfVl6u4PxkAj7AIC30vp7uroEaczvOX55smASckI/YNIe8/qlrdW7Gb/poXH4oARxIWbvR0Z2CUoq/qYtvCpGgcITKmxZIXZduIVDadm2Vf1UFvrRa4ENr1u+D9TeVlroV9hnzFPRklAhHItsofL777+jWzdLF37Xrl3x22+/2cUowhJxY7xSHfehlpln/UOiOh4VH943RXFL/SopyDQv+4Zz/4c2Nm+7dQ5YMRz4vDGQtgd1ltJ85zfCy0kDirLM6436mpdzMyo/d/9C4J+XgcJb0vtZFvj3NWBuK+DwMptN8mAtwz4A4GXnHBUA5m/9Sg9whdEcFnlYkUlASMV79uqh6rWHz7liXg5saPWw+kFmL8/1XLNQKYCoRLlCfOjVZhFyPSsLY5ccxEML9+FODs9LVp3Qz51LwpwXI57+0kMJTZ1yK4SKjkI/hGORLVTu3LkjqPgx4u/vj9u3qbmXoygXeU4+23AOWr0BhWXWP9SVcoUGgN+e64pBLSIx95E28JTbz+LmKfOyfwPuf6NgAYC984DUHdw3zh0fy7btruB6CvBxNPBJDLBhpvPum3HQvNzrdaDVw+b1/GuWxxu5fhTY8BpwaDGw+R3pY9L3AQcWArlXgPWvAAU3bTJJw0qLbE/GAbNjdBXeG6lQhpiwptz/rB4ouCH/Xrm8VrSBMVYPiwo0C5VruSWm6qFcVuQVqRAZa0+bQ3Tp182i81Tqdd6x1ehMm2elrYRPeOXl0sbcGcpRIRyM7CdZQkICNmzYYLH933//pYZvduZiViH6fLEdT604jKIyYU7K9bxS/HbkKgpKrQuV6nhUmtXzx8Kx7bmkQDnkZgCn1nDLGn8gogW3zHd9n1tvXk7dCRjs7+J3SwwGLkfn+5HAtz3N2/fP57Y7g6uHzMvRHQF/3u/X2oMKAK7sMy+n/CTZDA0Z5t49MGiBoz/YZJIHKx368WQc6FEReQgkx4H4myt6BF5CW8mt8Kh4+ALewVYPqx8o7VHJZUVioyIGu/VSAXQst+zLmJNevcATfNZCPyqe4BA3fMu38vv3DZe83oQVRxE74x+cyOI8Yqy2BGU6vdDrqy0Btn8CHP2RQr1EjZHdQn/69OmYPHkybt26hT59+gAAtmzZgi+++AJz5861t311lvUnMvH8T9yAx8u3irD7oqW36od9V/DyQOs9MGqaoyKL02vNI+I7P2tO6vOy/kGNvAyLqgqnU3iLy0XwDQMa9ZF3btEdIDcNqNeWa5T1x7NcnH/IHE4MAED6fmDpQOvX2PcN0PLBapsvIOsscO4fwDcSaP2ocBLvtcMVCwxQv72wMV9lHpXMFOF69mVhOA8AbpwUrqfuAO59uUpzPQzSHhWNI4SKMdxhzeMgMICXAFtZczQpDHpzKC0whqvBtkKor1k0/XvS7LnJhaU4YFkWuy/eQQG8EYRC+MMsNnzA82hY+/kUCkDtwyXSikM/UkK1XmvAK1BYBVRBEcvZXVxRR82werR6cx3K4IE/nu+Ktg2DgG2zgL0VHWH8o+T/bREED9lC5cknn0RZWRlmzZqFDz74AAAQGxuLBQsWYNy4cXY3sC6y5cxNk0gxkpFt+YHh66myu0el2vC7nLZ8yLxcSTIhss5wQoVluUTbSr592h2WBf5+CTjCy6kYOhfo8ETl5+VdBS5t47xH1pItl/QD7l/MhVe2flj59a4f5XIEQhpx30KP/wqENgFiusj6cXB5B/D9cPP6n89z/3uHAo/+zOUHAUBwHNfbgx8CyatEqFwTTUPPPGYpVPghPwC4cYJ7fauoGuPnqBhYBoqKCiBrAqZGGB/Ook6xkhZ62NhuXor86+Z5OZXkpwBc6321koFWL/Q4FLDCHBWWZdH3ix3IK9Ei28MPQUwhghlzTokXyxMqVjrhmvZpiyyrvPi//4eWc+GupAe4dQmPilGg5PM8P34oQRk8MGr+Xvh7qvCf4ldEVuzLTVmHQBIqRA2ozjQXPPfcc7h69Spu3ryJ/Px8XL58mUSKHTmYmm2x7bON5yy2+XuqKs9RcaZQuVnxrdrD15yMCFQhVE5zHo0F3YBP4zhXsSPRlXEP1V/HA+8FCkUKAPz9IjCnBXByDXDuXy6vgx+e0pUBSwcB6yZXXRGy8zOuTX3aLst9SQ8Cvd80r59aw1VOfNMR+GsqsHwIcPpPy/NSfgGWDABmNwTWTRFWW+y16GfKUXwb+O1J8zdj4+9G7cmJGMC6R6U0H7hzQbhN7GHRlgK3zwu3leRU7qWpwNNgfsDehjnvTWHv5Ey9zpzwaYtHRc07RsKjUCm3eX+nYkEngmEY+HlaVtXcBO9vJrQpDl/JweWKeUB3wHl7/JgSU1dfT4PRRkZouxjjFwFj9Z0RXuhn2qEgLNUNMuWW7b9qKRqLwIncfF7Srz9j9tLkl+rgqzeLoeMphxE74x988PdpGKRaaDsSluUS9/l5Q0Sto1pCRafTYfPmzVizZo0pLnn9+nUUFsp0kxKSKGwUGL4aFQor9ahU69crn9I88wdBeHNhXXNlXpKs01yCZlbFN/I9XwkHuvEpvCUcQS8HgwH4/Wngw3BgQVcuTGWN/KvAb08AvzwKLOnPeSl05Zw7/7PGXLjKFm6fB7aJvCmtHwPezAIeXAK0fsS8feuHwKwI87VZPbDjU+G5BxcDaydx+SBleVzfi5QfK2zO5BrqVfYzGeE/PAMq8lQKMqVf25snLbdlHheu3zrL2Svm9nng6hFhBYwIL72538h1lvc+kRtuqQp+3xBbhIrAo1JJczQpss6al8MSqzw8u8gyT2ejviP0LPcZsD9qLO4Umo/JZs1hqWBwXhUPfYVQ8fCtvKeAMQyrKxEmwFaEfkoYb/x5tgjv/30a529y135lzUmUiEYO9GsVh+/GdcDQTs1M27rW5wsuFkqYBX68gsvzWbI7FfGvr8cTyw7im60XsPP8LRSXOyDMx2f/AmD5YODb3kCx5RdAonYgO/Rz5coVDBo0COnp6SgrK0P//v3h5+eHTz/9FKWlpVi4cKEj7KxTVCY++HioFO7hUck6Y142JtEaqcyjknmMc5Ub0RZxD756rc3byou5LqF7K3r3RLYEHlhirsywhbWTgBO/Su/rNg3oOg1Y3Ev6W1faLuDDMNvu02w4l/8hVR3z4FKg+SjzgySwIRDfG7i8TfpaN09yD73wRE6krZfI+fjvbaBhVy7JFRXfVNuNB06t5cSMFMG8eVz+DbjfAWsACm8AAQ2Ex4o9JUDF8bywzo0TvGvHm3tx/DqBs0GpAZ7ZZvm+AOClN4cvrrOhaIOKc+WKg6rgD/AThTIko1P8ScNyPSq35AkVKc6wMRha/hF8UYJDB+MRetr8Gt/hCxUmH5lsCNS6ip+vsrAPAHjz/haLszmhyrKmv8F0vVks7rpwG43DfZGRXYIijadg1MGbozpypcs3zdf7cFAD/Pgd9yXDDyXwYszHR+EONChHWUV/mG3nbmHbOXOpe6S/J0a2rY974oNxT3yI/GrDytj2UcXPe5vLF0scXPnxhFsiW6hMmzYNHTp0wLFjxxASEmLaPmrUKDz11FN2Na6uUpn44PPr4cqnVTstR+XORfOyWEB4BnIPB+O3ZI0/V3Fy64yVB+FxTqhknQX++R9wZbdw/40TwP91Ahp0BJ7cKEwYFaMr40TO8VXC7d2nA4lDgMhW5lkmz+0Fvu7APbBtIboz0HYM0OJ+YTfQvGvAjk/MDzi1DzD5kNl7wWfQx8APo4ACnlgLiDZ7Vi5uAkpzrSfjaouABaJcls6TgD5vcT1TslOBVaOF+/nlsnxhkpNmKVT4v1elB5cwXJrL2WfMv+B7XRKHmENQRqGkLwMOfgsM+8rCfH+tOUH8Gsvrdm1voWLL0D4+fK+L3NLbW7zQTw2GPZ5hzb+n2zyPyh2YxUgIkw+wgIfemH9Txc/GT2wvqRAqxXdMFVGZrPnzPPV2oWkqdC7ri1CG836VsSpojIKIP8eoNA/GIUUxjPBvSMGwqMfcQRpbT9KsG/mlWLjjEhbuuAQA6JsYjoRwXwxKikSb6EDpyixb4feHEYe8iFqDbKGye/du7NmzBx4eQndgTEwMrl2rOi5NVE1lCbJyUCqdJFSyU83LwaISdYUCiOkKXPiPW4/uzH3A3ToDSW6c4Dw0K4YJO3yKuXoIWNwbePh7Tgz48rweRXeAwpuWD/FWjwIj50uLG40f8PI57t7XkoGm9wFn/+HyUfgM+JATA1IdOwHuw//Jjdywv4IbQL93pUUKwHlLXjwBXD3IeSIa9eHCON9VJB7+96blOc8fALxDgO/6mstgjYQlAhHNuWXfME54ePgJP6z5QiWypXk5fR8Q2114vds8oZL0AHDsF24585hZqFxPMR/TdIh0rsy5DcBQy+TaiGLzQ/2oIcG8w+5Chffze/jAQ6kw9SXyl8gREfQOkeNRYVmzUAmIrtrDUQ34oZ8Q5IOBAR7GXJ+q7ucl8qgAglAmP/x2p7Dc9Dl0nQ1BAjgxrVRrzL9HkVB5c0hbfPjPGXRWX7K49etdffG/I+bkf6kkYiNbzmZhy9ksLNrJedh6Nw3Do50aom9iODfqoLrURPAQLkW2UDEYDNDrLWPSV69ehZ+f/f8w6yKFZfZpeOU0j0oOT6gExVnuHzCrIreikCtdvnEckEh/AAAcXMT9M6JQA40HAPf+j/PGrH3O3BMk8xjwVUWYqPFATjyc/VviogzQbSrQ772qP6zCm3H/AKDdWCDuXq60N+cKNwtGLMSkqNcKeOTHqo8DAKWKE3IxXbl13wjO4ySVjNplMiduAOD+by09Lfd/K1z3DAA6PwPs4k01D4w2L/OHRKbtAe59RXi+MZFW5QU0GSQUKs2GcYLQ2EMlMEYYsuNTeIObnn3rHGdT08EAw6BeERcmucEGIZX/bdveOSqioX0/TOyEcUsPokGQF4a3ibI8XhD6keFRKcg0e5JsDE0+2L4BfjtSuWeUjzj0E4RCKIxhv8rCrIAwX8w484lX8XOd59XKKS43eXbzYPYwqTx4Is4z0LxcdAfjusUiwt8TPY8sAURR1AH1y3FimPD9Wq4zIKe4HJN/Tkbq7WIUlGpNXhw+xlBRpL8n2sUEol3DIIzuHGMxb6lKGCfl7BF2R7ZQ6d+/P+bOnYtvv+U+FBmGQWFhId555x0MHkzxP3tga+inKhyWo1KczTX1atCJK6M1hXAY6b4oYU2AqSlcKMZf2v0LlZdlK+6AaOCZHYCP2SWNpzYDm98Fdn8pPPbCRuv2jv4NaNyvih/KCkExzu31olACvd8wlxcbuecFoP8H5vWG9wAPLuMSf4PjudJqKaHQ4n6zUInrKfQWBMUBflFc6CnjINcu3ugpMujNibDB8UD9dubzUisqmS5vgyk3plFvLgk1+h4gYz/3ULjnea5PDMBVKxmTbgfOBpoMhKeeEyQnDPEoqggbAHB4jkrn+BAcfrMfvD1U0n8j1fWoVCM/5bVBibKECr86KozJQziTa97pG2l5Ah9+6MfkUTHfmx/62X85G70/3w4AOGRoimHK/dyONo+Zr8H/u8i+DA+VAsNahAB/85oEGpHI//JQKRDh74nVkziRXqrV48LNQpy7WYBXfjtm0SfuRn4p1p+4gfUnbuDDf84gPswHA5pHYkSbKDSrZ334o4nqjEMg3ALZEvPLL7/Ejh070Lx5c5SWluLxxx9HbGwsrl27hk8+cXB5aR3BmEwb5K3G/z3eTrCvXcNAeNjo/nRY1c/vTwGb3ubCM5e2mhMqI1pIzwYBuG9zRpES09U80AzgEi5HfCM8XqnhPAR8kWKk37vA0C8tt0sxcXP1RYqraDsaSBzKLYe3AN66Awz6yLKiI+l+4N08YOpRIL6n5XUAbnbNkC+ANmOA4aJhogxj9qpoi4CPY4AtH1QkWF4z9wMJjuNCPaEVXoKMA1ybfH5b/mbDuP/v/5a718iFXGKvEX5l0P75gsqrY4Z4FLMOFCr8idFegQAAP0+1dSFfXY+KID/FNqES5mdDS38e13liogFzC/UZXnjU2pcAI368/cYkdl5F2HVI/K0BWKXvjWPhI7jfcVfedGW+d9EYyk3fZxZ39dqY91c1TwqAp1qJlg0C8GD7Bjj2zgDEhfpApWDQv3kEWta3HNty+VYRFu64hPu+2oXR3+1HSkYufjpwBW+tPYmzN/Itb6C3UlFIuD2yPSpRUVFISUnBL7/8guTkZBgMBkycOBGjR4+Gl5fEXAiiUv45nokFOy6iT2IEpvfnku/S7nB/6L6eKjQIEr6mPhoVPNUKi9k/UjjEo1JwE7i0hVs2aIFfHjfvazNa+hwxHj5cOOfMOm69QQeuO6t3MHBgEZfc1/9966EEAOjwJPcPAC5u4bwsai9u2F77CVzip3/9aoyAdhMeWMKFuKLacuGhmtDxKaCjlX0x3YATq7llbRGw63POU9KHlx8TFMv933w41x8GLJC8Qtg6v36HimNjgJH/xy2zLFdZJG7RnpcBbHkfANfobZ2hq6k3BwD7h36KeF2dfUKtH2ekuh4VfvVbNSt+AOCF3o3wf9ss8zwALjzDMgowrAHRzC30UPCqrkKrCDfxw35GD4cg9CMtVMrggdVRr6D1yJbCHR4+3M956ywXDiy6w/0tGunwBPBXhbCxtay/An9PNf576V4Ul+sR4MV5+a7mFGP14av4assFi+P3XLyDPRfNg05/2H8Fo9rWh+DrjK7c4jyidlCtT0AvLy88+eSTePLJJ+1tT52iVKvH9F9TUKYz4OS1fFy4WSBopV1SbrD4xuXjoYKXhxL5vIRbX40K5XoDykXx3RrnqJQXAVcPA36R5pj7TlF/D2O4xiecEwi2MuhjoCyfu8d9Fdds1Kd6rbYT+nL/7ibUnkBcD8ffJ6EvoFCZxx8AXD6JsawT4LrmAkCrR4BdczjvyLZZ5v1hiSZPhQCG4TxBqydwJdAS/GfogHQ2AgwM5u609vaoFPOEirdcoSLHo8IP/VS/4md46/qY2D0eL61KQUpGLvJKzCELLVTQ+dSDuvAaWisuo7XisvnE+u0krsYjQEqomEXkDX4vGxFWWyY0GVjRS8fAecpMQoXhyvU3v8tV21Sj4ZpaqUCAl/mLRoMgbzzXqxF+PpiOWwVVe0f+OHoNX/IcdWeu3kb+5TvoFBdcs0oiwulUS6icO3cOX3/9Nc6cOQOGYZCYmIjJkycjMbH63yLqItdzSwTJY3yRAgB+nir4aIS/Ih+NCt4eKgDmP9St/+uJEf+3B5l5wi6SNfKo5GZwZcD8b5Tj/+ZavEvR6Wlho6yqCKgPjJPovko4l8CGwPCvuanHfE8Gf4hhw4rqqdDGXI7CUVGicItR1q/ffATw8A/ctOyotsCFTYJBf7/p7wUAsFCgGBr4otT+QkW2R6Ua5ckGvXnmUUC0sCJGJmF+GgT7eGDFk50AALEz/hHsLwtqDHWhKNk6KLbqRG8Pb8AnjKumMwqHiqTtW6y/qc+JFE90k0iSB4D2TwD75nPe1V2fm7fXb8d5SANjzJ2KdeXmdgDVxFOtxL/TeuDU9Xw0i/SDRqVE6/f/s+ncf1OuYN4RLtdm5n2JeKRjNFJvF9W8BJpwOLL94r/99huSkpJw5MgRtG7dGq1atUJycjJatmyJ1atXO8LGu5JSrb7KJLpXBjaFjyiz3VejtGiI5OmhlJxZoqpJefLRHyzd3iuGcl4QKZoNl95OuD9tHgdev8Z1zRX3GYntYa6CArgEWTGdJ1V+/WZDgUm7OUHEO79U5Y8dBnN4rxAVngzxLJqaks3zOvCnRltDqQaYir8xW0M/ty+YO+BGtZFlHp/+zSMQ7FP5w9y7WX/LjQ8uta381lhWXpDJJRlXiEZjIq2XRLO11ZO6oHV0oPT1guOArlMstydU5IUZw4asQXb4xxqhvhr0bBKGcH9PBHirMWtUkpUjhdm4HozZMzX737No8/4mjJq/F8v3ptnFLsJxyBYqr776KmbOnIl9+/Zhzpw5mDNnDvbu3YvXX38dr732miNsvCv5aP0ZzN8uHYc2cl9SpEXfgGAfDbzUwm2eKqXkN4IahX5OrbX92LBm8jrFEu6JSmMZemvzuHA9ogX3LdrIxE3SYR9rtH6UK8EGcKjhU9DynLo5bIVIKs6GRclHdTEYzG3t/RtwHVWrgmHMCbW2elT4s5kaWEsIqppJPS29Iv2bR5iWN7zYA4r2401ern365kgo/R7FYZXkc/ExeV1YbpBoRUjOKFR6NRV2YX6yWxw6xlYxLLTnq5YVR2KhAnBNBR3A/W0boHfTMHRPCMWxtwfg9+e6YPvLvTCzv9ALpIF01c97f512iF3V4tjKykeJ1FFkh35u3LghOYBwzJgx+Oyzz+xiVF3g+33WZ6AAwISusZLiI9hHbdE/QG3Fc1Ltqp/bF8zD1Rp24Upflw/mulgauX8xcHk750Lu/QY1U7pbSHrAnOQcksANUBRz3ydc5VZUOyA0wXJ/ZfiGAy8cAIqzcfw4C5w2V8rkshV9mPRlnCfDlrk8UrAs10/Hw4cLwRh7m1SWnC1G7cU1irPFo8KywPGVFSuMefJwNZDSZ7Pvb4mYYG+0aRiIxMgKofXEv3j/ly1YcbwYeihx+VYRkiQqYywI4f2+eIM1M1hOoNwTH4K4UB/M334Job4aTOgaW/U11V7cKIqNM7l1nzDuvQEIRzbw+y3ZES8PJZY90cm03j6GE1bPdI0CeDNBrQkVt+HsP8Afz3LLxXe4ggICQDWESq9evbBr1y4kJAg/oHbv3o0ePZyQ/FdH8PM0/2qe6BaLZXvSAAAtGwRix3lhx1Zr8dVq56icW29eThzCNRmbmgJ8zEvGC0sEWj1cvesT7kvzEcBDK7imfG1GS+cUqDQ1+917BQFeQWCYi4LNOeCFnYrvVF+obHkf2D3HcrucMnUPb6AIQFlBlYfi2hFzeCmuh+UogipoVs8fZzK5kGqDIMs8r1BfDd4c2ly4kWEQGBEDPbgeRpl5pTUSKlcrhIqXWolXByXi1UEy8w3bT+C8SllnuHJ4Y6WaEzwq1mBEVT6ecPOqn/O8XlB7v7GtQWUdQbZQGT58OF577TUcOXIE99xzDwBg//79WL16Nd577z2sW7dOcCxh5tyNAhSW6dA+pooOkoAgD+WtIc3RrmEQPNVKtIkOlBzaJfV+rnaOCn8Sb5P7KgzyB8b8Dvz9EtetNbKl9LlE7YZhuA68LUY6/FYK0Zs2x+hRAbjwjzGfwhZ0ZVy+ReouaZHCKLnuurbiFcw9WEtyuUTZymZK8RPMWz1i/TgrLBzTDl/8dx5dG4UgMsCz6hMq4H+ZKbK1SSQ/4fa22Ztl7AzsKbfbqxEPb2DiRsvXyoVCxTjDyEi/JgH4oUsnjF1y0MoJLobfjZrVcx4oWzph1wFkC5Xnn+eS4ebPn4/58+dL7gO4b/lSrfbrIjq9Ad/uuoxPN3AfDIvHdajyHH5+iULBYFhrc6tvqYQ3KarlUSkv4qaMAlzGvrE0FeDizi+ekD6PIGQifntaeFRsJetsxWyoLOvHdJ0M+Eu0y7eGqTqI5apWrFUL6bXAyd+5ZaXG3PhOBjEhPpj3WFvZ5/ErAm3uZh3amBNtvAZ8BpYxzVryrunkYrGg829gLn93ulAR5nkEexjQNEJ6zEvq7SJsPHUDJeV6vNA7AR4qF/RfyhNVcl3ZS0KlgmrN+iHk8cmGs1i8yxyfffr7w1We06GSBDapGReSHpXq5Kic+5drlgZwiZXkeiQcBCOqVbvFBppXeCXMVbLlfUuR0mIUMOL/gLTdXJ5KdGd5xvH7rRTdti5ULm8392lpel+NypLl4quxzaOy/kQm/jt1A5P7JCAh3I/LL0ozJ28cZ+OQXzHPR/b8nKpQqrhy7ZxU4M5lLrnZWU0YxSM5tCUIslJRZRwXAADRwd54sL288J1dEM/3StvDTWgn5Ff9EPIx5pfYygPtGlQaHpIK/Uhh4VHJOstN5L28XfoEgwHYyeuF0HyETfchiOog1sDpbLh5hV9SXBksC6TvFV8Z6P4Sl+PSZCA3F0mu4OYP8KvMu3N8lXnZyTlbPlaECsuyMBi4rNxSrR7P/5SMtSnX0W/OThxMzQY6ThRc5z+9uUqpUZioPN0eRLTg/tcWOSyhVhJx5YyuDGqlAkvGV+7Rfnn1MXy+8Rwy82Q0+6sppfkWrR9unNiK/FItMrKL8c/xTJRq9dAbWJRq9cgpKsdfx64jt5j7Unk9twT/+/UYVh2yvbEea6/KOidgs0flwIEDyM7Oxn333Wfa9v333+Odd95BUVERRo4cia+//hoajbzZFXcbJ6/l4ZXfjsPPU4WPRiXhws1C6Azy3hCv3Vd5qa/UZ67Ue05QnpxxEPjxAe6PYe83wKDZ3OyPyJbm8M7xleaZHQ06AvG9ZNlNEHIQ56gIhUoVDzRtCaD04DqrluSYtzfoyCV2yqnwkYLvQeF3tuVTVgCcqZjW7RkIJEj0N3EgvhrzF5bCMi6UU6rV4+FF+3CnsBw/PdXZwkPy8KJ9SPt4FArycpG+aT5StNFYqudyd36Y2ElWjozNRLY0TzW/cVwYTnYkohwVo4elb7MIpM4ejOT0XDywQCxyAYDF4m2ncexqLn6YKNMTZyP/nsjEqsMZmNSzEe6JDwGbf82iF1ak4QY+WrMdf6QyuFVQhqGt6uHv40JPY88mYVjxZCe8ufYktp7Nwu/JV9E5LgSfbjyLlPRcDGgRiTH3NMSxjDw0CPLCiWt5mLX+jOTzYmL3OPRvHoFmkf4I8FajTKeHWqGAwlHDbWVgs1B599130atXL5NQOXHiBCZOnIgJEyagWbNm+OyzzxAVFYV3333XUbbWCmauOWHK4O83Z2eVxyfV98fp6/ngaxkfjyp+LRJvMqk3nsmjotdxbcxNip0FNszgFhkl8MB33IyWv18yn9xrBoV9CIci/vzLYMPBMkowrB64ecr6iTdOAksHARo/roeHkXtfEc4oqgn8xnDWRNOZv8zhhaQHatx1VS5SHpUVe9Nw/CpXjv3m2pP47KFWFufN334Rn24IB/CuYHv3BBu69lYHfuJ95vHKOxnbE7FHRWsWLgzDoH1MEA690Q8dZ5mLBzQox08eH6EdcwGfX34IgGOEynM/JQMAtp+7hR8ndsa3y/7A9xJvn5snt+KWoTsAWIgUANhx/hYKy3TYetYc+uzFC2Mt35tmc0O7JbtTsWS38L3upVZiXJcYJNUPQFyoj22VZQ7A5tBPSkoK+vY1z1NZuXIlOnfujMWLF2P69OmYN28efv3VSnv1OsSJa/K6ai4d39EilGNrsmxVmDwq59Zbxj+NsHrgtyeAFSPM30BaP84N9yMIByIuqy+HGtrwiofa7XPckDsp9s/nepwUXBeK6xoMArSAfy3+sEE+KT+bl1s/ar972wg/R6WwnBMq52+axyAcTc+BTm/5DcaY1M8n2MfDcW3kI3li6YYTk/HFpeViDwu4cQX8ROb7FAfRQXEeCobFy6rVwO2LFufUFIPIw75sTyoiGfOE7/V6c0+Yzgor7z0eSe9srPKY6lKi1WPRzsuY8stRDP16N2Jn/MOFD52MzUIlJycHERHmDok7duzAoEHmcr+OHTsiI8M+LZLrAtP7N8GZ9wch3N8Tj3USlmFW5WqLCzX3lwipSA6TijeaPCqHl5g33r+YyyRXiLw25RV/1A27AsPmkjeFcDhSb3NDw67mlfR90iem/MRb4b3vg6zMo6kOoU0ApuLj8cZxy/2n15kTUkMSatSNtrpIJdPqeMUOapVCMEusMpZNcKD9AQ240BgAXD9qv67DVSEe95F/Dfj9aWDjG4JJysNbR2HXq70BAM0V5kacCoYFDi22u1lF5cLE5y1ns1APfKHSGVqW+7LaWXEWjiYh3BdT+zbGhK6x6NcsAh5KBXw8lIj0lw4DPrxonylqICanqByfbzyHnw5cQalWj+NXczFvywWrx9uKzaGfiIgIpKamIjo6GuXl5UhOTsZ7771n2l9QUAC1Wl0jY+oScaE+pvjxoKRIC5dbZYxsWx8Ld1xCenYxZo3ivoFK/ekzDMNVLKRWhKCCYrlOo81HcGXI+deAxX25TqAA94H7yA9cQy+CcDBS3+AVMV2BQxVtD9L3cXOC+BTcsDjHRLAdhYraE6jXBrieDGSd5nJhAhpw37D/eBa4xqvc6/6SS4S9j0YFBQMYWC6ZEgC0ep5QUSosJqpLMbF7nPVZPvaAYYDoTsCF/7h8n6wzQETzqs+rKVIelRMVXv/67YGk+027wv25z7w4Rvj+MpxcA8XAjyrvoyOTojLLth18j0oqWw/H2EbowJxHI0UmGjBZuMrP35KJRqXAkJb1cOl2EY5l5Jq2H3tnADQqBTQqheBvUac3mEa3ZOaV4KvNF7DykNAJ8fG/Z01DMwHgVkEZbhWU4YWfk5F6m5t59cYfJ03752ziGhP6eCjx/cTOaB8TZEoEtgWbhcqgQYMwY8YMfPLJJ1i7di28vb0FnWiPHz+ORo2clCTlprz62zGbj+U3awr3kycMPNVKbHzpXuQWaxFRoXrFX1JM8ebzG0zzPNB8JFcaqNBwYsQ7GHhqM3BkGRDSGGg/vvrdQAlCJlLPdnUcz6NyRSLR8YKVSbkefsJKHXvQZBAnVAAg5RdA4wtsflcYQojtwYVKXYBaqUDL+gE4djUP528WIqugFOU68wfBrYIyZBdV/TB4c0izKo+pMfG9zL+7y9tdI1T4nFojECoaFSdE4hhhHoiiKIvrKxXbzW5mSfW8qccTKtfZYGzVt0UHBfdw7684gmV6cxHLX5O7Y9g3u226V6C3Guun9kBUIDfw88LNAny15QL6NYtAgJe0Y4E/X65egBc+fqAVZt7XDKPm78HlChGy4/wtHLh8Bx1jg/H+36dtzoMpKtebEpgNZTYO/ISM0M+HH34IpVKJnj17YvHixVi8eDE8PMzZP0uXLsWAAQNsvvHdxs38Uvx6uPJpyHy8eQmzYTKFCsD9YUXwXHMGnlKJCfHGUqMr96yoHb6Yeq2AoV8CXZ4nkUI4FXHVDwAwPiHckEsAyDzGdYblk35A+mIy29bbRKuHzeGfbR9yCehGkeLfAOjzFjB6tfP6gkhgnGsDAJeyilCiFT4El+yuuszbYbkpfPgVhOc3yDuXZYE984B/Z1i+HyqjMqEicR0l9GjI3LQ8Vq69VSDV8yZOxY1FKWE9kAM/bDK0N+3rp0gWHhvmg98mdan0Hq2jA7H7td44+Ho/k0gBgMYRfvjm8XYY2daGKeI8ArzV2PpyL/RJNHt2Hvl2P+JfX++U6dM2/4WFhYVh165dyMnJQU5ODkaNEmZur169Gu+8847dDawt3Cms+pvLqmfugZ9GhU6xwejA65Pi7aFC6wZcNvVjnaKtnV4pfIdKUv0ArrNiebF5nodPOFC/6o64BOEsrKZiNeLyBcDqgZO/CfflWekT4QihEhwHtH7McntCf+DprcC9L3MD+VxIsI/5W3Fhmc5Upmxk27lb4lNcQ3hzczv91J2WXVgr4/wGYNNbwIEFwJb3qj7eSGWiRqK4YFQ8Cw+Ge/32G5pBzzLm+9sRsUdFDR2iWU4gXWbrAWBwga2PNAOXE9pZcQb+MCdJ+3goEeIr/eX2zSHNsHdGH/z5Qjc0CPK2e4fd6f2bVLr/sU4NcextocPiq0fb4MV+jWt0X9k/RUBAAJRKy3hdcHCwwMNS18gtEQqVBkFe+GBkkmk92McDneNDkPx2f6x69h6LhNkVT3bCsgkd8c6wFtW6/9h7YkzLg5O4uR24uMlcPtn0Ppd+8yMIMeLOtCbajDYvJ38v3GftARcg7xuizfR9B4hI4jwrsT2Ax1YCY34D/CKqPtcJ+HmahUpBqRZlWnljS6wlTNodhuGJPhY4+K3t5/KGJ+LwUtuTcQsryWfKSROUKwPA2/eYvdzJhsZIZiserrfPA3cu2WisDWaJhEpD5iYU4H5vl1jjmAcGmw3cBGoVY8BQpdmTyDAMQn2ln7V+niqBB8XeJNUPQEK4dFPArx5tg9n3t0SAtzCk1CIqAC/2a4Jfn+2CJ7tVL4+Mnlx2IrdYOEJcqWAwok0UIiqStCb35mZpqJUKSVdroLcHeieG29x1Vswz98ZjUs9GeGVgUwxuGcltPLXWfAB1mSXcDPGfwXvDK0R6ZBIQVVEymnkMuJ7CLbOs9TL7iCTp7TXFLwJ4bg/w1h1gwt+c4Hcj+LluhWU6m5Jn+Xz1aBs7W1QJbcdyTfoA4MAi4JZlmbQkGaIhgjdPSh8nprLEa9YAZAvFh3+huaDhoiEKW/TtzDut5UZVg6s5wo637TzNeTGXDOZ5VH/qzXkxz6v+hCfMfWH4FV98vKrqwWUHFo5pJ5lfxk9nmNA1FgAQG+JtqlLtFBeMt4c1x+jOMoaNVkBCxU6IhUqb6ED4e6rx15TuWPN8VzzRLdah9/dUKzHjvkS80DuBE0LaEvPYcK8gbuIxQbgR4hyVgS0izSvtxpmXDy/lpiLnpJlzRBp2BSIqeq6ofYAW5sRIxxjrnh+V/AdWQanO5nJkAKgX4InO8SGOMEuagPpAx6e5ZV0J8PPDQMYhC8+GgNJ8y94rtogGlq06vCQWSrxp0pfYKGwx8ISKncI/6XeK8cHfp03r0/o2xgftzcLlJBtrWj7BxmO7nuuw3IC5jRdVa0z7GIbB9P5NEOitRu+mYQA479iA5o739CWE+2Hx2A7o0VjYINCb1wV5xn2J+HZse6x6tovFKJfX7ktE30R5VUyOl191BHHo543BXEJguJ8nwv2c5F7lc3EzN1sDABKHAkoqHSfcC/G3MoEWSHqQ63ehLQaSV3D/+IQmAIM+4TrYRia5PFfEVQhDP/KESosoF3QZ7VMxayzrFCc8l/Tjtsf2AO7/1nLC9dEfBZOeAQDn/wN6/K/y+xRkAmVVNN+8fV64XuG5M7AMLrL1UQRPZBjCEK24xQ0ILM2r8dDJ6b+mCNYf6tAAnr+bS92TDVy4adaoJLzxx0m8rxuLLopT0DA6TFSuxw+6fqZjp/ZtjCl9uC+m6XeKEernUW2PvFz6NY+An6cKuy6Yx0vwxzV4qpUYwP/iwcPfU43F4zrg+WWlWGTj/dzza0IthO9R+fmpzgh3VuzXGqf/NC83H+kyMwjCGmKPipK/7ulfeat1/waAhzcQ3bHOihRAHPrRokxne46KwRVD6Ty8uUqpcFF5ctouYPkQoRfk7D/cEFUxGQcqnwVVnA2sGmtet+ZN5ntUygpNIaUcvwQUwQv8PBEYtMCxVZbXEGEwsPh25yV8t+uyoAPt5VuFaPH2Bhy+Yp5L1SjMBw08SoBrXFVPrncscuCPPonheKwjFx65zEbhWz3XS0jN6LG4ibDqzZhG0DDEWxB6cQY+ovCTt4zJ2woFg08fsn0eFwkVO8FvXmMtI9sp3L4A7Ps/4MRqbt0zEIjv6Tp7CMIKFh4V8YaerwEBVqrgAuXHue9G+EJFrkfFlh4rDiGgPjBxEzBgFtBsGOBRkZyZfRn4ri+w4zPg7+mc2DB6U+55nktsBgCwXI6LFCwLrHxc2JCv61Suz46Yq4cAQ8X1L2839ZsKaNLddMhKfW/z8Qe/FSTyZhWUYuvZmyZxuPJgOnp+vg0frT+LD/85g39PmnNk3ll3CkXlQhHp56kGzqwz/YyBbUfg4Bt9sWR8BygUjCm0ous4CayKE+PNMtdyQswNEAuVKmfU1QAK/diJczfMNfuB3k4Ks9w6B/w1jRv0FZrADR/MEg1za/0ohX0It0QsTCxGRwTFAJMPc+GfXV8A+74x7zMm29Zx+KGf3GKtrGRaOZ1B7Y7GF+g6GcBkruvv8qFATioXstn2ofDYlg9xoqb4DrD9Y66T9qHvgHZjgQhRlWRminD0QkJ/IKEfMHwesONToMkAbqjlpS1AXgZwei03UJJXBq9qNgRtMryRkpGLc2xDnFK3RAvtCeDOBeDyNqBRH+gNLB5YsBcZ2SV4oXcjnM0swBbeYEAA+OVgOoa04iow+SESI3qdVii4WowSpAksndARF7MKkRjpB0Y9Fjj4LRhtMfez84dxuggfkQdFPKnbnpBHxQ6UavU4dtUcD7XW8c+u6Mq4ZLT0fVwuSuYxS5HiEw70eNnxthBENRA7UMRJdwC4VvbewUD/D4BRi4D43sC9rwLhdhxAWIsJ9FJDreRet4xs2zt9AkCOqADAZQQ0AJ7cwIkKPiovoNfr3O9doQB8w4BuU7l9Bi3w86NAVsUsHJblwt2/jjef320a8Pgq7o2WdD/wwn6g//tA1ynmY7bO4kIvxlC5VzAQ11PwxfPrIt6A1s3vAnodbhWUISObS4L9v22XLEQKANwuLMOa5KuSnWgBFlPxM3CrYuhgdGduZAMPtVKBZvX8ufBOl8ncpHsAOLCQK5ZwMTUJ/ciFPCp24Agv7gjAOQlNh5dyyWhiGAUX249syfWj8A1zvC0EUQ0qzVGxOFjBeQddMKXYnVEoGNQL8EJ6djFS7xTJOtdT7UbfU/0iuf40t85xVT4qDRDTzXIsQo//cVU/mce45n+LenDho9x0LpRjRKkBukyRntET3wuI6Q5c2c2VKC/mhXe6PA+oPFDKy/XZZGjP5dRknebuu2EGDF3fr/JHOnujANN/PYbHOuWAYfhRIxYfev6E/jkVXcMZBTDgw8rnRQXFcJ/rJ3/jPEt75gG9XqvSBkfiJXrOearIo+K2nLqeh9HfmROcjK4+h3N4qXn5mR3AhH849+jkw8CDS7lBab7VH2RFEI5G7EFx0wpgt6degOW8L1u8up880MpRJlWfsKZAywc58SE1u0ntBTy2ylyari8HTv4uFCneIVwFkbUvaQzDeVYY0RuuXmsunwXA+8PNISU9lCgd/JXZo3FoMbz3fgrpUbCW/HIwXfC7OT88A2PAG20y6BNuaGNV9Pif2Yadn5m9SS5CHKq1CN3a814Ou3IdYdrKFMH6MGcIlbyr5tK66M5AVBsgtjsX8w2p24MhidqDuGlVpR4VwipSnUh7NA5FkESu3Jh7GuLwm/2wefq96NW0ln6R8a8HTNwIdJ9uTsQFgMAYTsS8fAFoMbLyazRoDzz6MxDaBNAEAC0fBsauNU2Of6xTQ3jwhvNd9W4GjPg/860OfYnv1R/jAcVOBCPfJrOV0GOC3yF4bOGNmhnxf0DnZ2w6HxHNhaGv357g+szUASj0UwNYlsXFrELBtjBn9Ey5vN28HN/b6mEE4c5YCBUHfiO7mwnytmynrrHihm8S4YdQXw1CXVmZaA88fIB+73DzlrLOAkoV151YKtRjjab3We00rFIq8My98fhm20UAwLpjmXip36NgSnO54ZQA7lWewL3KEyhmNVir74qTbDwuGaKgBwMNo4UnyuGFcvgwpWjJXMYg5SGEannCovNzQNsx8n7unq9xZdu3z3OhqF8eAx77ucb9XarLs/fGY9HOy5jYvXqt8W2FhEoNyC+xTJIKr8YkZNkIhEovx9+PIByAr6fw48cpU3zvQvw8LT/GNVbyT+66V9jDh/OOOID6QWZP1bwtFxAf6oOR9zwHBESjfN1L8CjhEmi9mTI8rtoGYJvtF28+AugvY8CiEbUXN2/qu75ASQ6XZ/Ndf+Dh712SYD5zcDNM6tkIQT6OnfNHoZ8a8MlGYYxQrWQQ5mihYjCYhYqHL9CAJiITtRM/K/NKCHlICRV+2IKoHg2ChCG1F1elcAvNhiJl1DaMK38Ny3UDUMraVuVZyqrxj74T8MhPwIPLTWEm2YQ0Akb/zuXiAFzrf37pvpNxtEgByKNSI34+IBw5/8rApo6v+Mk6DRRVjG6P7U49Uohai9ijQlQPf0/LzwAfjRL1ArzcpwS5FlIvwDL35+cD6Xi8c0OUQoOdhtbYaWiNObqH0EKRhkbMdcQyN2CAAmVQo4xVowQaFMETN9kgHDQkogheGNJsSM2Na9Cea5q3aiyXrzLo45pf042hT4pqsv2csG5+92u90SDI2/E3vsxzL1J+ClGLEZc3EtVDyqMSG+KDLx6Owsj/2yOrWy1hRup1ff2PE3isU7SgsV4+fLDP0AL70MLieIcS0gh4ajP3xVXjW/XxtRjyD1aTv4+bR3PHh/k4R6QAlJ9C3DVQTop9EDfeAoCEcF80q+ePg6/3kziDsAWp1xUA9l/Oxvu8Cch83h7aXHK7w/Dw5nqs3OWQR6Wa3C4sMy1/O9YxyVwW6Mq4KZ4A4FeP6zlAEESdxmJGEoDGEdxsmwBnjfO4C/G24vF7bPF+q+e0jwlylDl1GvKoVINT1/Ow/RyXJ+KhVKBRmJPcbhkHAV1F6+T4XpV3MiSIWsCINlEAYBrARsjHRyN8oM4f3U5Q+p0YaR7IFxvq4zS7ajvVaWDmlPEpdRDyqFSDJ5aZuyCW6w3Oc2Ff3GxepvwU4i7gkwda4f52DdAxlr6JVpc20YHoEBOEY1dz8fVj7TAoKVKwf8GY9pj+awoSI/3QPYEEoSOxFi4y8n+Pt3OSJXcXJFRkciOvFFkF5rCPw8uR+Zz7l/ufUQAJfSs/liBqAZ5qJXo2oXlUNYFhGKye1AUFZTrJCqC4UB/88Xw3F1hW9xB7t4x4KBX4e2p3NInwk9xPVA6FfmSybE+qYP3rx+w8bl5bCvw1Dfi8CfDTw0DBDW77lX1cvTwANOgE+NA3I4IgOBiGkRQphPNQMFwlW8v6ll1i/3ihK4mUGkBCRQa3C8uwaOdl0/ovT9+De+JD7HcDlgX+fgk4shwovAlc2Ags6AasmwKs5o0vbzfOfvckCIIgaoyvRgWGYSy+vL45pBlaRLmmxf3dAoV+ZLD26DXT8oDmEejSyM4iZfts4NjPwu3Ft4Hk783rYYlAy4fsd1+CIAiixvhVeLTECcvUx6bmkEdFBiev5ZmWx3WJrf6FCm4CuemAQc+ta0uAf6YDOz4xH3Pfp0DjARBM50joXzHh0/EtiwmCIOo6Xz/WFmolg06xwegcF1zpsZ5W5iuVafWOMK1OQR4VG7lVUIa1KdcBcDN9OlXxppW+yDng7+ncICkAUHtzvVDyrprb4gPAwI+Azs9y/wpvAXkZQGBDykshCIJwIsNaR6F3Yjh8PJRgGAaDv9qF05n5ksfyqz/H3hODH/ZfAQB0aUSf2zXF5R6V+fPnIy4uDp6enmjfvj127drlapMsYFkWL/yUbFpv3SAQHioZL522BNj2EZdvYhQpAKAtBq4fNYsUhRoYuQDo8oL5GN8woH47EikEQRAuwJh7AnDl9ACgVDDY9WpvQf8frd4c4nllUFNM6BqL1wcn2jdFoI7iUo/KqlWr8OKLL2L+/Pno1q0bFi1ahPvuuw+nT59Gw4YNXWmaCYOBxcu/HcPBtGzTtukDmkgfzLJA8R3g9gUg+xKQnwnkXwPObwQKrpuPC4gGIlsBN08CuVcAlRfQuB/Q+w0gvJmDfyKCIAiiOrRsEIAdr/SCWqlAVKAXIvw9Tfuu3Ck2Lft7qvHucCfP/rmLYViWZV11886dO6Ndu3ZYsGCBaVuzZs0wcuRIzJ49u8rz8/PzERAQgLy8PPj7+9t0z1KtHsv3pkFvYMGyLPQGQM8al1kYWMDAsqifdxRxeftxMzsXpcVF8GLK4YlytIvyRJQPAL0WMOgAfTnX2l5bApTkAKW51m+uUAFdpwI9XwXUFZM5dWWA0oO6zBIEQdQyVh/OwCu/HQcANInwxX8v9XSxRbUHOc9vl3lUysvLceTIEcyYMUOwfcCAAdi7d6/kOWVlZSgrMzdby8+XjhVWRqlWj4//PVvlcc8qd2K8+hduhf8q3ZR9S4BRAk0GAn3fAcIThftUTmwYRxAEQdiNEW3q46cD6Th/swDvDiMPiqNwmVC5ffs29Ho9IiIiBNsjIiJw48YNyXNmz56N9957r0b3tbXdfQlsraxhOO+IypMbtR0cD4Q2AUISgIAGgF8kEBQHeFcj+ZYgCIJwWzxUCvzxfFeU6QzwtDLEkKg5Lq/6EQsHlmWtiomZM2di+vTppvX8/HxER0fLup+3hxILx7SHguESohQMA4WC4dYZBgzDQKlg4FnUEBcK+sPfzw/hwQFg1D6A2pPLJ1F7AkoNF8pRuDwfmSAIgnARDMOQSHEwLhMqoaGhUCqVFt6TrKwsCy+LEY1GA42mZqEStVJhMbRLmmAALWt0L4IgCIIgaobL3AEeHh5o3749Nm3aJNi+adMmdO3a1UVWEQRBEAThTrg09DN9+nSMHTsWHTp0QJcuXfDtt98iPT0dkyZNcqVZBEEQBEG4CS4VKo888gju3LmD999/H5mZmUhKSsL69esRExPjSrMIgiAIgnATXNpHpaZUp48KQRAEQRCuRc7zm0pWCIIgCIJwW0ioEARBEAThtpBQIQiCIAjCbSGhQhAEQRCE20JChSAIgiAIt4WECkEQBEEQbgsJFYIgCIIg3BYSKgRBEARBuC0kVAiCIAiCcFtc2kK/phib6ubn57vYEoIgCIIgbMX43LalOX6tFioFBQUAgOjoaBdbQhAEQRCEXAoKChAQEFDpMbV61o/BYMD169fh5+cHhmFcbY5bkZ+fj+joaGRkZNAcJCdCr7vroNfeNdDr7jpq82vPsiwKCgoQFRUFhaLyLJRa7VFRKBRo0KCBq81wa/z9/WvdG/hugF5310GvvWug19111NbXvipPihFKpiUIgiAIwm0hoUIQBEEQhNtCQuUuRaPR4J133oFGo3G1KXUKet1dB732roFed9dRV177Wp1MSxAEQRDE3Q15VAiCIAiCcFtIqBAEQRAE4baQUCEIgiAIwm0hoUIQBEEQhNtCQqWWMnv2bDAMgxdffNG0jWVZvPvuu4iKioKXlxd69eqFU6dOCc4rKyvDlClTEBoaCh8fHwwfPhxXr151svW1j2vXrmHMmDEICQmBt7c32rRpgyNHjpj202vvGHQ6Hd58803ExcXBy8sL8fHxeP/992EwGEzH0Gtfc3bu3Ilhw4YhKioKDMNg7dq1gv32eo1zcnIwduxYBAQEICAgAGPHjkVubq6Dfzr3prLXXqvV4rXXXkPLli3h4+ODqKgojBs3DtevXxdc465/7Vmi1nHw4EE2NjaWbdWqFTtt2jTT9o8//pj18/Njf//9d/bEiRPsI488wtarV4/Nz883HTNp0iS2fv367KZNm9jk5GS2d+/ebOvWrVmdTueCn6R2kJ2dzcbExLATJkxgDxw4wKamprKbN29mL168aDqGXnvH8OGHH7IhISHs33//zaamprKrV69mfX192blz55qOode+5qxfv55944032N9//50FwP7xxx+C/fZ6jQcNGsQmJSWxe/fuZffu3csmJSWxQ4cOddaP6ZZU9trn5uay/fr1Y1etWsWePXuW3bdvH9u5c2e2ffv2gmvc7a89CZVaRkFBAdu4cWN206ZNbM+ePU1CxWAwsJGRkezHH39sOra0tJQNCAhgFy5cyLIs96ZXq9XsypUrTcdcu3aNVSgU7IYNG5z6c9QmXnvtNbZ79+5W99Nr7ziGDBnCPvnkk4Jt999/PztmzBiWZem1dwTih6W9XuPTp0+zANj9+/ebjtm3bx8LgD179qyDf6ragZRIFHPw4EEWAHvlyhWWZevGa0+hn1rGCy+8gCFDhqBfv36C7ampqbhx4wYGDBhg2qbRaNCzZ0/s3bsXAHDkyBFotVrBMVFRUUhKSjIdQ1iybt06dOjQAQ899BDCw8PRtm1bLF682LSfXnvH0b17d2zZsgXnz58HABw7dgy7d+/G4MGDAdBr7wzs9Rrv27cPAQEB6Ny5s+mYe+65BwEBAfR7kEFeXh4YhkFgYCCAuvHa1+qhhHWNlStXIjk5GYcOHbLYd+PGDQBARESEYHtERASuXLliOsbDwwNBQUEWxxjPJyy5fPkyFixYgOnTp+P111/HwYMHMXXqVGg0GowbN45eewfy2muvIS8vD4mJiVAqldDr9Zg1axYee+wxAPS+dwb2eo1v3LiB8PBwi+uHh4fT78FGSktLMWPGDDz++OOmIYR14bUnoVJLyMjIwLRp0/Dff//B09PT6nEMwwjWWZa12CbGlmPqMgaDAR06dMBHH30EAGjbti1OnTqFBQsWYNy4cabj6LW3P6tWrcKPP/6In3/+GS1atEBKSgpefPFFREVFYfz48abj6LV3PPZ4jaWOp9+DbWi1Wjz66KMwGAyYP39+lcffTa89hX5qCUeOHEFWVhbat28PlUoFlUqFHTt2YN68eVCpVKZvO2J1nJWVZdoXGRmJ8vJy5OTkWD2GsKRevXpo3ry5YFuzZs2Qnp4OgHtdAXrtHcErr7yCGTNm4NFHH0XLli0xduxYvPTSS5g9ezYAeu2dgb1e48jISNy8edPi+rdu3aLfQxVotVo8/PDDSE1NxaZNm0zeFKBuvPYkVGoJffv2xYkTJ5CSkmL616FDB4wePRopKSmIj49HZGQkNm3aZDqnvLwcO3bsQNeuXQEA7du3h1qtFhyTmZmJkydPmo4hLOnWrRvOnTsn2Hb+/HnExMQAAOLi4ui1dxDFxcVQKIQfU0ql0lSeTK+947HXa9ylSxfk5eXh4MGDpmMOHDiAvLw8+j1UglGkXLhwAZs3b0ZISIhgf5147V2UxEvYAX7VD8tyJYQBAQHsmjVr2BMnTrCPPfaYZAlhgwYN2M2bN7PJyclsnz59qEyzCg4ePMiqVCp21qxZ7IULF9iffvqJ9fb2Zn/88UfTMfTaO4bx48ez9evXN5Unr1mzhg0NDWVfffVV0zH02tecgoIC9ujRo+zRo0dZAOycOXPYo0ePmipL7PUaDxo0iG3VqhW7b98+dt++fWzLli1rTYmso6jstddqtezw4cPZBg0asCkpKWxmZqbpX1lZmekad/trT0KlFiMWKgaDgX3nnXfYyMhIVqPRsPfeey974sQJwTklJSXs5MmT2eDgYNbLy4sdOnQom56e7mTLax9//fUXm5SUxGo0GjYxMZH99ttvBfvptXcM+fn57LRp09iGDRuynp6ebHx8PPvGG28IPqTpta8527ZtYwFY/Bs/fjzLsvZ7je/cucOOHj2a9fPzY/38/NjRo0ezOTk5Tvop3ZPKXvvU1FTJfQDYbdu2ma5xt7/2DMuyrLO9OARBEARBELZAOSoEQRAEQbgtJFQIgiAIgnBbSKgQBEEQBOG2kFAhCIIgCMJtIaFCEARBEITbQkKFIAiCIAi3hYQKQRAEQRBuCwkVgiAIgiDcFhIqBEHYhXfffRdt2rRxtRkmGIbB2rVrZZ937tw5REZGoqCgwP5G8cjKykJYWBiuXbvm0PsQRG2HhApB1CIWLlwIPz8/6HQ607bCwkKo1Wr06NFDcOyuXbvAMAzOnz/vbDOdir0F0htvvIEXXngBfn5+drumFOHh4Rg7dizeeecdh96HIGo7JFQIohbRu3dvFBYW4vDhw6Ztu3btQmRkJA4dOoTi4mLT9u3btyMqKgpNmjRxham1kqtXr2LdunV44oknnHK/J554Aj/99BNycnKccj+CqI2QUCGIWkTTpk0RFRWF7du3m7Zt374dI0aMQKNGjbB3717B9t69ewMAfvzxR3To0AF+fn6IjIzE448/jqysLACAwWBAgwYNsHDhQsG9kpOTwTAMLl++DADIy8vDM888g/DwcPj7+6NPnz44duxYpfYuW7YMzZo1g6enJxITEzF//nzTvrS0NDAMgzVr1qB3797w9vZG69atsW/fPsE1Fi9ejOjoaHh7e2PUqFGYM2cOAgMDAQDLly/He++9h2PHjoFhGDAMg+XLl5vOvX37NkaNGgVvb280btwY69atq9TeX3/9Fa1bt0aDBg1M25YvX47AwEBs3LgRzZo1g6+vLwYNGoTMzMz/b+/eQqL6vjiAfycvZJPddBrF+wWTxEQJQ6NmplJDA6XC2zwkWTEvUpJCoFFmmg8yEGFlSirVGBSUPWhCNV4yS5kau2kXLyikmSg03jJt/R/C8+vo9OtC/dJ/6wPC7H32WXudeZDFPvucEcYkJSUhJiYGubm5kMvlWLZsGbKysjA5OYn09HSsWLECzs7OOH/+vGg+f39/ODg44Nq1a/+aF2N/My5UGJtnlEol9Hq90Nbr9VAqlVAoFEL/xMQEGhsbhUJlYmIC2dnZaGlpwfXr19HZ2YmkpCQAwIIFCxAfH49Lly6J5tHpdAgJCYGnpyeICFFRUejr60NlZSUMBgOCgoKwefNmDA4Oms2zqKgIGRkZyMnJQWtrK3Jzc3H48GGUlZWJxmVkZCAtLQ1GoxE+Pj5ISEgQbm01NDRAo9Fg//79MBqNCAsLQ05OjnBuXFwcDh48CD8/P/T29qK3txdxcXHC8aysLMTGxuLx48eIjIyEWq3+ar4AUFdXh7Vr187qHx0dRX5+Pi5cuIC6ujp0d3cjLS1NNObOnTt48+YN6urqoNVqcfToUWzbtg3Lly/HgwcPoNFooNFo0NPTIzovODgY9fX1X82Jsb/eH/71ZsbYDzp37hxJpVL6+PEjvX//niwtLent27d0+fJlCg0NJSKi2tpaAkDt7e1mYzQ1NREAMplMRET08OFDkkgk1NXVRUREU1NT5OTkRAUFBUREdPv2bVqyZAmNj4+L4nh5eVFhYSERER05coQCAgKEYy4uLqTT6UTjs7OzKSQkhIhI+An74uJi4fizZ88IALW2thIRUVxcHEVFRYliqNVqWrp0qdCeOe80AJSZmSm0h4eHSSKRUFVVldnvhIgoICCAjh07JuorKSkhAPT69Wuhr6CggORyudDetWsXubm50dTUlNC3atUq2rBhg9CenJwkqVRK5eXlovipqamkVCq/mhNjfzteUWFsnlGpVBgZGUFzczPq6+vh4+ODlStXQqFQoLm5GSMjI6ipqYGrqys8PT0BAI8ePUJ0dDTc3Nxga2sLpVIJAOju7gYABAYGwtfXF+Xl5QCA2tpa9Pf3IzY2FgBgMBgwPDwMOzs7LF68WPjr7OxEe3v7rBzfvXuHnp4eJCcni8YfP3581vg1a9YInx0dHQFAuC314sULBAcHi8bPbP+bL2NLpVLY2toKsc0ZGxvDwoULZ/UvWrQIXl5eojxnxvHz88OCBf/8S5XL5fD39xfaFhYWsLOzm3WejY2NaG8RY0zM8k8nwBj7Md7e3nB2doZer8fQ0BAUCgUAwMHBAR4eHmhoaIBer8emTZsAACMjIwgPD0d4eDguXrwImUyG7u5uREREYGJiQoirVquh0+lw6NAh6HQ6REREwN7eHsDnfSyOjo6ivTHTpveLfOnTp08APt/+WbduneiYhYWFqG1lZSV8lkgkovOJSOibRkTf/I7MxZ6OPx3bHHt7e7MbW83FmZmHuTHfM//g4CBkMtnXL4KxvxwXKozNQyqVCjU1NRgaGkJ6errQr1AoUF1djfv37wtPrrS1tWFgYAB5eXlwcXEBANFTQ9MSExORmZkJg8GAq1ev4syZM8KxoKAg9PX1wdLSEu7u7t/MTy6Xw8nJCR0dHVCr1T99nb6+vmhqahL1zczd2toaU1NTPz3HlwIDA/H8+fNfEut7PX36VFjhYozNxrd+GJuHVCoV7t69C6PRKKyoAJ8LlaKiIoyPjwsbaV1dXWFtbY1Tp06ho6MDN27cQHZ29qyYHh4eCA0NRXJyMiYnJxEdHS0c27JlC0JCQhATE4Pq6mp0dXXh3r17yMzMNFv0AJ/fb3LixAmcPHkSL1++xJMnT1BSUgKtVvvd15mSkoLKykpotVq8evUKhYWFqKqqEq2yuLu7o7OzE0ajEQMDA/jw4cN3x58pIiICjY2Nv6zw+ZbR0VEYDAaEh4f/J/MxNh9xocLYPKRSqTA2NgZvb2/I5XKhX6FQwGQywcvLS1g9kclkKC0txZUrV7B69Wrk5eUhPz/fbFy1Wo2WlhZs374dNjY2Qr9EIkFlZSU2btyI3bt3w8fHB/Hx8ejq6hLN/6U9e/aguLgYpaWl8Pf3h0KhQGlpKTw8PL77OtevX4+zZ89Cq9UiICAAN2/eRGpqqmgfyY4dO7B161aoVCrIZDJhn83PiIyMhJWVFW7duvXTMX5ERUUFXF1dZ72sjzH2Dwn9yA1fxhj7w/bu3Yu2trbf9kjv6dOnUVFRgerq6t8S/0vBwcE4cOAAEhMTf/tcjM1XvEeFMTan5efnIywsDFKpFFVVVSgrKxO9OO5X27dvH4aGhmAymX7ra/T7+/uxc+dOJCQk/LY5GPt/wCsqjLE5LTY2FjU1NTCZTPD09ERKSgo0Gs2fTosx9h/hQoUxxhhjcxZvpmWMMcbYnMWFCmOMMcbmLC5UGGOMMTZncaHCGGOMsTmLCxXGGGOMzVlcqDDGGGNszuJChTHGGGNzFhcqjDHGGJuz/gfV2FfCtFhfewAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(reference['AM1.5G'], \n", " linewidth=2, label='AM1.5G')\n", "plt.plot(xe_arc, \n", " linewidth=2, label='Xe-arc lamp')\n", "plt.ylabel('Spectral distribution (Etr W*m-2*nm-1)')\n", "plt.xlabel('Wavelength (nm)')\n", "plt.xlim([250,1300])\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define the relevant constants and retrieve the QE of the silicon solar cell (device under test), and the callibrated cell." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "h=6.63*10**(-34) # [J·s] Planck constant\n", "e=1.60*10**(-19) # [C] electron charge\n", "c =299792458 #[m/s] Light speed" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "QE_dut = pd.read_csv('data/QE_DUT.csv', index_col=0, header=0) \n", "QE_cal= pd.read_csv('data/QE_calibrated_cell.csv', index_col=0, header=0) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We calculate the Spectral Response (SR) of both cells and plot them. " ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG0CAYAAADU2ObLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJwElEQVR4nO3dd3hT1RvA8W/SvYEuCi2lZUOZLXuDMkRwoYgMB6iIIkMc/HAgojgRFxtUBAURtwgUZJQNpew9W0qhtJROOnN/f9ySEFpKW9ImTd/P8+Tx3pN7b9402Lw995z3aBRFURBCCCGEsFJacwcghBBCCFGWJNkRQgghhFWTZEcIIYQQVk2SHSGEEEJYNUl2hBBCCGHVJNkRQgghhFWTZEcIIYQQVs3W3AGYm06n4+LFi7i5uaHRaMwdjhBCCCGKQVEUUlNTqVGjBlpt0X03lT7ZuXjxIgEBAeYOQwghhBClEBMTg7+/f5HHVPpkx83NDVB/WO7u7maORgghhBDFkZKSQkBAgP57vCiVPtm5cevK3d1dkh0hhBCiginOEBQZoCyEEEIIqybJjhBCCCGsmiQ7QgghhLBqkuwIIYQQwqpJsiOEEEIIqybJjhBCCCGsmsUlO7NmzSIoKAhHR0dCQ0OJiIgo8vilS5fSvHlznJ2d8fPz4+mnnyYxMbGcohVCCCGEpbOoZGf58uWMGzeOyZMnExUVRefOnenbty/R0dGFHr9lyxaGDx/OiBEjOHz4MCtWrGD37t2MHDmynCMXQgghhKWyqGRnxowZjBgxgpEjR9KoUSNmzpxJQEAAs2fPLvT4HTt2ULt2bV5++WWCgoLo1KkTzz//PHv27CnnyIUQQghhqSwm2cnOziYyMpJevXoZtffq1Ytt27YVek6HDh24cOECq1atQlEULl++zC+//EK/fv1u+zpZWVmkpKQYPYQQQghhvSwm2UlISCAvLw9fX1+jdl9fXy5dulToOR06dGDp0qUMGjQIe3t7qlevTpUqVfjqq69u+zrTp0/Hw8ND/5BFQIUQQgjrZjHJzg23rnGhKMpt1704cuQIL7/8Mm+//TaRkZGsXr2as2fPMmrUqNtef9KkSSQnJ+sfMTExJo1fCCGEEJbFYhYC9fLywsbGpkAvTnx8fIHenhumT59Ox44defXVVwFo1qwZLi4udO7cmWnTpuHn51fgHAcHBxwcHEz/BoQQQlRYeTqF3eeucvJyKm2DPanve+eVtEXFYTHJjr29PaGhoYSHh/PQQw/p28PDw3nggQcKPScjIwNbW+O3YGNjA6g9QkIIIURRkq/nsGJPDN9vP0fM1esAONnZsPz5djTzr2Le4ITJWEyyAzBhwgSGDRtGWFgY7du3Z968eURHR+tvS02aNInY2FgWL14MQP/+/Xn22WeZPXs2vXv3Ji4ujnHjxtGmTRtq1KhhzrcihBDCgp2+ksZ3W8+xcu8FMrLzjJ67npPHyO/38O/Yzni6yp0Aa2BRyc6gQYNITExk6tSpxMXFERISwqpVqwgMDAQgLi7OqObOU089RWpqKl9//TWvvPIKVapUoUePHnz00UfmegtCCCEslE6nsPnkFb7deo5NJ64UeL5dcDV2nLkKQHxqFq/+coCFT4bddtyoqDg0SiW/35OSkoKHhwfJycm4u7ubOxwhhBAmlp6Vy8q9F/hu2znOXEk3es7JzoaBof482aE2dX1ciU/N5L4vIkhIywbgnf6NebpjkDnCFndQku9vi+rZEUIIIUwl5moG3287x/I9MaRm5ho951/ViSfb1+ax1gF4ONnp233cHPnk0eY8/e1uAKavOkbbIE8a15A/hisySXaEEEJYjdw8HbvOXeW7redYd/QyulvuXbQNqsbTHYO4t7EvNtrCb091b+DDiE5BLNxyluw8HWN+2stfYzrhbC9fmRWVfHJCCCEqrMycPCLPJ7H73FUizyex93wS6bcMOLa31fJA8xo81bE2TWp4FOu6r/VpwI4ziRy+mMLpK+m8/cdhPn6kGdrbJEjCskmyI4QQokKJvXadNYcusf7YZXafSyI7V1focb7uDgxrF8jgNrVKPKvKwdaGLwe35P4vt3A9J49fIi+QnpXLjMda4GRvY4q3IcqRJDtCCCEs3tX0bH7aFc3qQ5c4GJt82+N83R0IC6xGrya+9A3xw9629AsF1PF25cNHmjJ++T50Cvx76BIXkraz4MkwfN0dS31dUf4k2RFCCGGxcvN0LNlxnhnhJ0i5ZZAxQM0qTnSq60W7OtUIC6yGf1Unk04Vf6BFTdyd7BjzYxRpWbkcjE3mga+3suip1jJouQKRqecy9VwIISzSttMJvPvnEY5fTjVqD6npTu/G1ekdUp16Pq7lUgfn+KVUnvluN7HX1CrLLvY2zBoaStf63mX+2qJwJfn+lmRHkh0hhLAoZxPS+XTNcf45GGfUPjDUn7E96xFQzdkscSWkZTHy+z3si7kGqAOf/3ixI4385LvDHCTZKQFJdoQQwjJERScxd9MZ1hy5xM3fTM38PZgyoAmtalU1X3D5rmfnMW55FGsOXwagro8rf77UUaalm4EkOyUgyY4QQpiPoihsPH6FOZtOs/PsVaPnPF3seb1PQwaG+lvUlO/MnDwenrWNI3EpAAwKC+Cjgc3MHFXlIxWUhRBCWLScPB1/7b/I3E1nCozJ8XFz4JlOQTzRthbujna3uYL5ONrZ8NUTLen/1RYysvNYvieGDnU9eaBFTXOHJm5Dkh0hhBDlJjMnjxV7Ypi7+QwXkq4bPRfs7cLzXYJ5sGVNHGwtu5ZNHW9X3nsghFdW7Adg8m+HaFWrqtnGE4miSbIjhBCizCmKwsq9sXz47zES0rKMnmtZqwqjutbh3ka+FnW76k4eCfVny6kEfouKJS0rl1dW7OenZ9vddhkKYT6S7AghhChTKZk5TPr1IP8cMJ5d1bW+N6O71aFNULVymT5eFt59oAm7zl4l9tp1dp29ysItZ3iuSx1zhyVuIcmOEEKIMrM3OomXf4oyumXVN6Q6L3avS0jN4q1TZcncHe347LHmDJ6/A0WBT9ecoF+zGtSs4mTu0MRNSl9HWwghhLgNnU5h9sbTPDZnuz7RcXe0ZfaQVsweGmoVic4N7YI9eaZjEADZeTq+/u+kmSMSt5JkRwghhMlcTc9m7qbTdP9sIx+tPkauTq1uEhZYlVVjO9O3qZ+ZIywbY3rUxc1BvVny854LnE9MN3NE4mZyG0sIIcRd0ekUdpxNZMWeC/xzMM5oFXKNBl7qXpexPetha2O9f19XcbZnROcgZq47SZ5O4Yv1J5nxWAtzhyXySbIjhBCiVI5dSuH3qIv8sS+WuOTMAs93rufFS93r0jbY0wzRlb9nOgXx3bZzXMvI4feoWEZ3q0NdHzdzhyWQZEcIIUQJJGfk8OOuaP7YF8uxS6kFnvdwsuPRUH+GtAskyMvFDBGaj7ujHc91Cebj1cfRKfD5upN880Qrc4clkGRHCCFEMa09fIn//XaoQJ0cW62GrvW9ebBlTe5t7IujnWUXBCxLT3WozaItZ0lIy+afA3G82C2FxjVkKSJzk2RHCCFEkZLSs5ny12H+2HfRqD00sCoPtKhBv6Z+eLo6mCk6y+Jsb8sL3ery3t9HAJgRfpwFT7Y2c1RCkh0hhBC3tfpQHG/+foiEtGx9W8+GPrzdvzGBnpXrNlVxDWlbiwURZ4hLzmTd0Xj2RidZxIrtlZn1Do0XQghRKrl5Ov49GMegudsZtWSvPtHxcLLj80HNWfBkmCQ6RXC0s2FMj3r6/U/XHDdjNAKkZ0cIIUS+xLQslu2OYcmO8wVmV93TyJcPHgrBx93RTNFVLI+G+TN382nOJ2aw7XQiW08l0LGul7nDqrQk2RFCiEou5moGszed5pfIC0Y1ckBdiXxsz3oMaF6jwq5fZQ52NlrG31Ofccv3AfDJmuN0qOMpP0MzkWRHCCEqqXMJ6czaeIpf98bqKx2DWgiwZ0MfnuxQm051veQLupT6N6/B7I2nOX45lX0x11hz+BJ9QqyzgrSlk2RHCCEqmZirGXwefoLf98VyU46Dq4Mtg9sEMKxdbWp5OpsvQCtho9Xwau8GjFy8B4CPVh+nZyNf7Ky4krSlkmRHCCEqCUVRWL47hvf+PkJ6dp6+3c3Rlmc6BvF0x9pUcbY3Y4TWp2cjH9oGVWPn2aucTUjnx53RPNmhtrnDqnQk2RFCiEogPiWTN349yH/H4vVtVZztGNkpiOEdauPuaGfG6KyXRqPhf/c14oFvtgLwxfqTPNSqpvy8y5n0pQkhhJX7+8BFes3cbJToDAoLIOK17rzUo5588Zax5gFV6N+8BqCuCj9n42kzR1T5SLIjhBBWKjdPxxsrD/DSj1Fcy8gBwNvNgUVPhfHRwGa4SZJTbl7r3QD7/LE6C7ec5eK162aOqHKxuGRn1qxZBAUF4ejoSGhoKBEREbc99qmnnkKj0RR4NGnSpBwjFkIIy5ORnctzP0SybHeMvq1fMz/WjutCj4a+Zoyscgqo5szw9oEAZOXq+GztCTNHVLlYVLKzfPlyxo0bx+TJk4mKiqJz58707duX6OjoQo//4osviIuL0z9iYmKoVq0ajz76aDlHLoQQluNqejZPzN+pv21lb6NlxmPN+eaJVlR1kQHI5vJSj7q4O6pDZX+NukB0YoaZI6o8LCrZmTFjBiNGjGDkyJE0atSImTNnEhAQwOzZsws93sPDg+rVq+sfe/bsISkpiaeffrqcIxdCCMsQczWDgXO2sS/mGgBuDrZ8/0wbHm7lb97ABFWc7XmuSzAAigLLdhf+h7wwPYtJdrKzs4mMjKRXr15G7b169WLbtm3FusbChQu55557CAwMvO0xWVlZpKSkGD2EEMIaHLmYwiOzt3HmSjoAPm4O/DyqPe3reJo5MnHDY60DsNWqRRp/3nOBnDzdHc4QpmAxyU5CQgJ5eXn4+hrfS/b19eXSpUt3PD8uLo5///2XkSNHFnnc9OnT8fDw0D8CAgLuKm4hhLAE204nMGjuduJTswB1mYdfR3egkZ+7mSMTN/Nxc+Texur3XEJaFuuPXjZzRJWDxSQ7N9xallxRlGKVKv/uu++oUqUKDz74YJHHTZo0ieTkZP0jJiamyOOFEMLS/X3gIk8t2k1qVi4ALWtVYeWoDvhXlSrIlmhwm1r67R93yXdQebCYooJeXl7Y2NgU6MWJj48v0NtzK0VRWLRoEcOGDcPevujBdw4ODjg4ONx1vEIIYQm+23qWd/8+gpK/7EPPhj58/UQrnOxtzBuYuK1Odb3wr+rEhaTrRJy8QszVDAKqSWJaliymZ8fe3p7Q0FDCw8ON2sPDw+nQoUOR527atIlTp04xYsSIsgxRCCEshqIofLT6GFP+MiQ6j4X5M3dYqCQ6Fk6r1eh7dxQFlu+W3p2yZjHJDsCECRNYsGABixYt4ujRo4wfP57o6GhGjRoFqLeghg8fXuC8hQsX0rZtW0JCQso7ZCGEKHdJ6dmMXrqX2TdV4h3Toy4fPdIMW1lkskJ4NNRfP1B5+Z4YGahcxizmNhbAoEGDSExMZOrUqcTFxRESEsKqVav0s6vi4uIK1NxJTk5m5cqVfPHFF+YIWQghytWGY/G8tvIAV/IHIms0MHVAE4a1r23ewESJ+Lg70rORD2sOX+ZKahYbj1/RD1wWpqdRlBsdoJVTSkoKHh4eJCcn4+4usxaEEJYpNTOHD1Yd46ddhj/4qjjb8fEjzejVpLoZIxOlteFYPE9/txuAexv7Mn94mJkjqlhK8v1tUT07QgghjF3LyOa7bef4dus5kq/n6Nu7NfDmo0ea4evuaMboxN3oXM8LX3cHLqdk8d+xeOJTM/Fxk8+zLEiyI4QQFuhKahYLtpxhyfbzpGfn6dud7W14s19jBrcJKFZZDmG5bG20DAz155sNp8nTKfy2N5bnu9Yxd1hWSZIdIYSwIJdTMpm14RTLdseQlWsYtGqj1fBgi5qM7VmPWp4yTdlaPBoawDcb1IHmP++J4bkuwZLElgFJdoQQwgIoisLv+2J554/DpGTm6tvtbbU8FubP813qSC0WK1Tby4U2QdXYdfYqp6+kcyg2hab+HuYOy+pIsiOEEGaWkJbFm78dYvVhQ1FVZ3sbhrYLZGSnIHxkXI5Ve6BFDXadvQrAmsOXJNkpA1KQQQghzGj1oTh6f77ZKNF5sEUNtrzeg//d10gSnUrg3sa+3LhztebwndeCFCUnPTtCCGEGyRk5TPnrML9FxerbqrnY8/6DIfRt6mfGyER583FzpFWtqkSeT+JkfBqnr6RRx9vV3GFZFenZEUKIcrbxeDy9Zm4ySnR6NfZl7fgukuhUUn1uqpUkvTumJ8mOEEKUk7SsXP7320Ge+nY3l1PUCshujrbMeKw5c4eF4uUqixRXVr2Nkp3LZozEOsltLCGEKAc7zyQy8Zf9xFy9rm/rXM+Ljwc2w8/DyYyRCUtQy9OZRn7uHI1LYX/MNeKSr8u/CxOSnh0hhChDmTl5vPf3ER6fv0Of6Djb2zDtwRAWP9NGvtCEXu8mhrWx1krvjklJsiOEEGVkf8w1+n0ZwcItZ7mxCmHr2lX5d2xnhrYLlOJxwkifEBm3U1bkNpYQQphYdq6Or/47yayN6jIAoBYHfLVXA57pFISNVpIcUVADXzcCPZ05n5jBzrNXSUrPpqqLvbnDsgrSsyOEECZ0NC6FB77Zylf/ndInOk1revDPmE482yVYEh1xWxqNRj8rK0+nsO6o3MoyFUl2hBDCBHLzdMzaeIoBX2/haFwKALZaDePvqc+voztQz9fNzBGKiqCXTEEvE3IbSwgh7tKp+FRe/eUAUdHX9G31fV2Z8VgLQmpK6X9RfC0DquDj5kB8ahabTyaQnpWLi4N8Vd8t6dkRQohSupySyaRfD9J7ZoQ+0dFo4Pmuwfw1ppMkOqLEtFoNvfJnZWXn6og4mWDmiKyDpItCCFFCqZk5zN10hgVbzpCZo9O31/Z05rPHmhMaWM2M0YmK7p5GvizZEQ3AuqOXjWZpidKRZEcIIYopO1fHkh3n+XrDKa6mZ+vbXR1sGdU1mBGdgnGytzFjhMIatAv2xNnehozsPDYciydPp8jA9rskyY4QQhTDwQvJvLJiHycup+nb7Gw0DG0XyEvd6+IpSz0IE3G0s6FzPS/WHL5MYno2hy8m08y/irnDqtAk2RFCiCJk5+r4esMpvtlgmEoO8ECLGrxybwNqeTqbMTphrTrV89avkbXzzFVJdu6SJDtCCHEbBy8k89rKA/qp5ABNarjz4cPNaOovg49F2WkfbBj3teNMIs92CTZjNBWfJDtCCHGL69l5zFx3gvkRZ7jRmWOr1fBSj7q82L0udjYykVWUrTrerni52pOQls2us1dl3M5dkmRHCCFusv10IpN+PcC5xAx9W8PqbnwysLn05ohyo9FoaBvkyT8H40jNyuXIxRT593cXJNkRQgggJTOH6auO8dOuaH2bvY2Wl3vW5fmudaQ3R5S7dsHV+OdgHAA7zyZKsnMXJNkRQlR6Z66k8cx3u416c8ICq/LhI82o6+NqxshEZdYu2FO/veNMIiM7y7id0pJkRwhRqe08k8jzSyK5lpEDgIu9Da/3bcjQtoFoZYyEMKO6Pq54utiTmJ7NThm3c1ekX1YIUWmtjLzA0IU79YlOw+purB7XheHta0uiI8xOo9HQNn9WVmpmrtGsQFEykuwIISodRVGYsfY4r6zYT06eOt2qa31vVoxqT0A1qZsjLMett7JE6UiyI4SoVDJz8hi7bB9f/ndK3za0XS0WPhmGm6OdGSMToiDjZOeqGSOp2GTMjhCi0jgVn8aEn/dx4EIyoK5QPvm+RozoFIRGY8bbVlfPwk+DIScdmj8BoU+Bu5/h+WP/QNQSyEyBvGzwqgfdJkGVALOFLMpHPR9XqrnYczU9m11nE2XcTilJsiOEsHo6ncLi7eeY/u8xsnLVVcqd7Gz44vEW9Gpi5hWldTr4fTRcOarub/oQIj6FRv0h9Gk4tBL2fm98zoVdcPRv6PshVG8K12IgOQauRUN2GjS4D+r3Lv/3IkxOrbdTjX8PXSIlf9xOSE2Zgl5SFncba9asWQQFBeHo6EhoaCgRERFFHp+VlcXkyZMJDAzEwcGBOnXqsGjRonKKVghh6eKSrzNs0U6m/HVEn+gEe7uwYlT78k10FAVyswu271kI0duM23S5cPg3WDygYKJzQ1Yy/P4CzOkEywbDv6/B9q8h8jv48TH4cRDEHVATocTTcPAXWP0/2PRJ4XEIiyXjdu6eRfXsLF++nHHjxjFr1iw6duzI3Llz6du3L0eOHKFWrVqFnvPYY49x+fJlFi5cSN26dYmPjyc3N7ecIxdCWKK90Uk8+/0eEtMNX+5PdajN630a4mRvU7YvnpUGh36BfT9C4inITFaTGLca4NNIfVQLhnVTDOc8vAASjqsJS/oVQ7udM/T9GJo9BjkZ8O8bcGBZ0a9/YrX6KEzmNej9/l2+QVFebk52dp69KvV2SkGjKIpy58PKR9u2bWnVqhWzZ8/WtzVq1IgHH3yQ6dOnFzh+9erVPP7445w5c4Zq1aoVeL4wWVlZZGVl6fdTUlIICAggOTkZd3f3u38TQgiL8M+BOCb8vE/fm+Pn4cgnA5vTqZ5X2b6wosC2r2DTx5CdWvzzWj0JA75Ut3Oz4MgfEPUD2NhDnw/VcTo3O/o3HP4V7JzAo5Y6fscjAFLjIPxt9b+3pYFn1kCttiV+e6L86XQKYe+v42p6Nh5OdkS9da+URkD9/vbw8CjW97fFJDvZ2dk4OzuzYsUKHnroIX372LFj2bdvH5s2bSpwzujRozlx4gRhYWH88MMPuLi4MGDAAN577z2cnJwKfZ0pU6bw7rvvFmiXZEcI66AoCrM3nebj1cf1be2CqzFnaChVnO3L9sVzs+CvcbD/R+N2d39w8VQTl4STas/KzdxqwIs7wNFEYzGyUmHnXLhyTO1NUhTwbgjXk2DXXPWYanVg1Bawl6n2FcGoHyJZffgSAKte7kzjGvJ9VZJkx2JuYyUkJJCXl4evr69Ru6+vL5cuXSr0nDNnzrBlyxYcHR357bffSEhIYPTo0Vy9evW243YmTZrEhAkT9Ps3enaEEBVfTp6ON387xPI9Mfq2gaH+fPBQU+xtTThEUZcHexapSUtAO/CsC+ciYNd8dfDwDS2GQusRULOVoU1RIPUSxB+B+KOQHq8eZ6pEB8DBDbpMLDzui3vhwm64ehqWDoRmg6BeL+PZX8LitA6qpk92Is9flWSnhCwm2bnh1umfiqLcdkqoTqdDo9GwdOlSPDzUXxQzZsxg4MCBfPPNN4X27jg4OODg4GD6wIUQZpV8PYfRSyPZesowgPPV3g0Y3a2O6aeVb/4ENha8ta5n6wgPzYUmDxZ8TqNREwt3P6jb07Rx3YnWBh6YpQ5qzsuC81vVB4Bfc6h7j9r7lJkMbn7Qajg4VSnfGEWhwgKr6rf3nE9iWPva5gumArKYZMfLywsbG5sCvTjx8fEFentu8PPzo2bNmvpEB9QxPoqicOHCBerVq1foeUII67LpxBUm/3aQC0nXAbC31fLZo83p37yG6V8s4SREfHb759394bHF4B9q+tc2Be/6MHAh/D3eeBB03H71cbOtM6HHm+p4Im0ZD+gWRWpcwx0nOxuu5+Sx51ySucOpcCxm6rm9vT2hoaGEh4cbtYeHh9OhQ4dCz+nYsSMXL14kLS1N33bixAm0Wi3+/v5lGq8QwvwS0rIYuyyKJxft0ic61Vzs+enZtmWT6CgK/DNBLewH0OQhaDkMAjtB+5fgqX9g7D7LTXRuaNQfXjkBI9dDl9egerPCj8tIVJOiOZ3hTMFxk6L82NloaR6g/mEfe+06l1MyzRxRxWIxA5RBnXo+bNgw5syZQ/v27Zk3bx7z58/n8OHDBAYGMmnSJGJjY1m8eDEAaWlpNGrUiHbt2vHuu++SkJDAyJEj6dq1K/Pnzy/Wa5ZkgJMQwjIoisLv+2J5968j+kU8QR2I/MnA5qZf3+piFFw+rPZ87JqntlWpBaN3Ws8A35Q4iN0DNg5g5wh7vlVne92s4f3w4CzTji8SxTZ91VHmbj4DwPfPtKFrfW8zR2ReFXKAMsCgQYNITExk6tSpxMXFERISwqpVqwgMDAQgLi6O6Oho/fGurq6Eh4czZswYwsLC8PT05LHHHmPatGnmegtCiDKWnJHD5N8P8vcBw9RqDyc7JvdrxKOh/qYdn5N6SS3Wd+SPgs/1m2E9iQ7kjyPqb9gP6gJtn4fVb6jJHsCxv+GXTHjiZ7mtZQZ1fVz12ycvp1b6ZKckLKpnxxykZ0eIimPHmUQmLN/HxWRDF/6A5jV4u39jvFxNNPEg6TxEb4fYSNi/XK1UfKtmj8PDc03zepZOp1MLGK6eZJgy32EM9HhLndVl7wI1Wpo1xMpiX8w1HvxGHVD+eOsAPnzkNrcfK4kK27MjhBCFycnTMXPdCWZtPM2NP8/cHW2Z/nAz+jUr5ZTpK8fhzzGgsYGWQ6BmKETMgIMrgFv+BnT2hI5joWoQeNQEvxZ383YqFq0WWjyhFiz84UG1bs+2r2D3QrWaM8Dg5dCgj1nDrAxu7tk5cbkEBSuFJDtCCMt24nIqr/y8n4Oxhh6WtkHV+HxQC2pUKbx46B0lnYPFDxiqDN+6NtUNGi00Hwy9poFz8aq0W62gztD3I/jnFXX/RqIDsHOOJDvlwNXBlppVnIi9dp2T8WlFlmYRxiTZEUJYpNw8HQu2nGVG+Amy85d8sNVqmNCrPs93qYNNacvlp8QZJzq3cqoGbZ6FWu3U2zNOVQs/rjJqPVK9zbftS3DxUWv1ZCbD2U3qz1UKE5a5uj6uxF67TmpmLvGpWfi6O5o7pApBkh0hhMU5FJvM6ysPcPhiir6tjrcLnw9qQTP/KqW/8PF/1Z6JlFh136sB9P0QDqxQZyI1fhA6vCSzjYrS6z3o+hrYuaiFFTd/DIoODq1Uf3aiTNXzcWXTCbU+0snLaZLsFJMkO0IIi3E9O4/P151gQcQZdPnDZjQaGNkpiFd6NcDRroQzgC7uU1cdz0qF1ItwZqPhuSqBMPx3cK8BdXqY6B1UEg5u6n+bPaYmOwAHlkuyUw7q+d40Iys+tewXtrUSpUp2zp8/z/Hjx2natCl+fgW7LS9evEiNGmVQ0EsIYbXikq/z5KJdnLhsKBLasLobHz7SjBYBVUp+wdP/wY+DDAUAb1anJwz4Sk10ROl51YMardT1ti4dUNf68mlk7qisWj1fN/32zf+viKKVuILyTz/9RN26denTpw916tThhx9+ANQE6MMPP6Rt27bUqlXL5IEKIazX6StpDJy9Xf/L295Wy6u9G/DXmE6lS3TOb4dlQwomOs5e8NA8GLpSnVUl7l6zQYbtAz+bL45K4uYZWafiZUZWcZU42XnvvfcYM2YMBw8e5N577+WFF15g8uTJ1KlTh++++442bdrw66+/3vlCQggB7I+5xqNzthN7TV3uIdDTmX/HdubF7nWxsynBr6hrMbBjDvw8HJY8Ypgt1PB+eHE3vLwPXjkGzQep98aEaYQ8rE7fB9i/DHKzzBuPlXN3tKN6/jidE5fVGVnizkp8G+v06dOMHTuWwMBAvvnmG2rVqsX27ds5ePAgjRpJ96UQovi2nEzguR/2kJGdB0AjP3e+f6Y1Pm4lGHR5YQ9s/xqO/AlKnvFzdXrCwEVga6KCg6IgVx+o1wtO/KuOi9q7WJ3NJspMPV9XLqVkknw9h4S0bLzd5N/3nZS4ZycnJwcnJ7W2hb+/P05OTnz66aeS6Aghii1Pp7B8dzRPf7dLn+i0CarGsufaFT/RiT8GPz4OC3rC4d+MEx17N2g5FAYtkUSnPHR73bC9+RPIzrj9seKu1fMxjNs5KcUFi6VUA5R//PFH+vTpQ8OGDdFqtVStKnUohBB3lpun48/9F/n6v1OcSUjXt9/b2JevBrcs3myrS4fUnpwDy9Upzze4eEPYCGh4H/iGyNpN5alGS3Ul9aN/Qdpl2D1frTgtyoTxjKw0OtSVGVl3UuJkp1OnTrzzzju88sorVK1alczMTL744gs6dOhASEgI9evXx9ZWZrQLIQxy8nT8FhXLNxtOcT7R+K/+x1sHMO3BEGzvND4n9TL8MRpOrTNud/ODrq+rlY7tpOaI2XR/E47+DSiw5XNo0A+86po7KqtUz8d4+rm4sxJnJZs3bwbg5MmTREZGsnfvXiIjI1m8eDHXrl3Dzs6OBg0acODAAZMHK4SoePbHXOOVFfs5FW88TbZtUDVe7lmPDnU871zyPicTlj2hFv67wbEKdHwZ2r5gXauPV1Q+DdWZWQeWwfUk+DpUXTm91zTwa27u6KyK8W0smX5eHKXugqlXrx716tXj8ccf17edOXOGyMhIoqKiTBKcEKLiys7V8eX6k8zedJo8nWHGSKe6XozpUZe2wZ7Fu5CiwKpXDImOqy90eVVdnNLepQwiF6XWY7JauDHtkrp/djN8PwDG7pNlN0zIw9kOHzcH4lOzOBkvyU5xlDjZOXz4MA4ODtStW7B7Mjg4mODgYB599FGTBCeEqJiOXExhws/7OHbJ0MXetKYHUwY0JjSwGAtq5uVA3H6IPwLRO2HfErXd1gmGrJCeAktVpRa8sA32LYU9C9UFVzOvwfZvoMeb5o7OqtTzdSU+NYur6dkkpGXh5SoD8YtS4mRnwoQJNGnShBkzZujb/vjjD3788Ud8fHwYP348wcHBJg1SCFEx5ObpmL3xNF/+d5KcPLU3x1ar4eWe9XihW5071805vQF2zILz2yC7kL9YH/haEh1L5+Kp3l5s/AB8FQq6HNgxG9qNlpXjTaiutytbTyUCcCo+TZKdOyjx1PP9+/fzyCOP6PePHj3Ko48+ytatW1m2bBlt27bl4sWLJg1SCGH5Tl5O5eHZ2/gs/IQ+0WlY3Y3fX+zIyz3r3TnROfwbLHkYTq4tmOhobNQBsE0HllH0wuSqBkKrYep2dhps/cK88ViZmyspn74it7LupMQ9O8nJyQQEBOj3Fy9eTHBwMIcPHyY3N5f777+fDz/8kC+//NKkgQohLFOeTmHhljN8uvYE2bnqVHCtBl7oVoeXe9bDwbYYU8CPrYKVIw1TyV191cGtNcPU9Zd8m4Bb9TJ8F6JMdJ4IUUvUZTt2zYP2L4Grt7mjsgp1jJaNkGTnTkqc7Pj7+xMXF6df/2rdunU89thj2NjYYGNjw6RJkxg9erTJAxVCWJ5rGdm8sGQv288k6tvqeLvw2WMtiremVXYG7PgGNn0Muly1reVQ6P8VaEvc8SwsjUdNCH0ads1Vl+9Y9Qo8+r0s12ECdSXZKZES/za599579eN1zp8/T1RUFPfee6/++Tp16hATE2O6CIUQFinmagaPzN6mT3Q0Gni2cxD/vNz5zolOeoK6jtVXofDfNMOCnU0fhf5fSqJjTTq/opYJADjyhzpwWdw1b1cH3B3V/orTkuzcUYl7diZPnkzLli0JDg4mMzOTgIAAOnXqpH/+8uXLuLq6FnEFIURFd+DCNZ75bg8Jaeqij16u9swaEkqboDsMQE06D6snwYnVxss7aGzU9ZR6vS+Vj62Nmy88OEutkwSw+n/g3wb8mpk3rgpOo9FQ18eVvdHXuJicSXpWLi4OUtD3dkr851PNmjXZvXs3Dz30EH379uXXX381Kgj233//Ub9+fZMGKYSwHOuPXmbQ3B36RCfY24XfRne8c6ITvQPm94Dj/xgnOvX7wOjt0PcjsJFf1lapYT+1+CNAXhb88jRkSeXfuyWDlIuvVL9ZAgMD+eyzzwp97siRIwwcKDMmhLBGS3ac5+0/DnGjRmCb2tWYNzyUKs72tz8pJ1NdCXvtZMPtKtfq0Pxx9eEjiwhXCve+C9HbIW4fJJ6CvyfAw/Nk/M5duHXcTjP/KuYLxsKZ/M+oxYsXm/qSQggzy8rN45PVx1mw5ay+7f5mfnz6aPPbL96Zcx12zlFrrKRdNrQHdYHHFktF3crG1gEe/RbmdIHsVDj4MwR3VQeki1KRQcrFJ33GQogiHb6YzCs/7zeqhvx812Be790QrfY2f5Wf3wZ/jlH/gr9Z2DPQ92OwsSvDiIXFqhYM/WfCyhHq/j8T1fE73jL0oTTqehvWyJJkp2iS7AghCnWjGvIX60+Sm3/fys5Gw9v9mzCsXWDhJ+XlQvjb6nRyPQ006g8dx4F/aJnHLSxc04FwLgIiv4Pc6+q/lyeWmTuqCqlmVSfsbbVk5+o4JWN2iiTJjhCigFPxqbzy8372X0jWtzWs7saMx1rQuIZ74SddT4IVT6kLQd7g3xoGfCXjcoSx3tPhZDikxMKJf9X1z2q1NXdUFY6NVkOwlwvHLqUSnZhBTp7uzpXKKyn5qQgh9PJ0CvM3n+G+L7foEx2tBl7qXpc/X+p0+0QneicsuMeQ6Gjt1C+0Z9ZIoiMKsneGrq8Z9tdPVVe3FyV2Y9xOrk7hfGK6maOxXGWS7Gi1Wnr06EFkZGRZXF4IUQbOJaQzaO523l91VL/sQx1vF34d3ZGJvRtgb1vIr4ukc/DzcFjUyzA+x9kTnvwL2o+Wmjni9loMhWp11O3zW+D0f+aNp4IK9jYMUj6bkGHGSCxbmSQ7ixYtomvXrrz88stlcXkhhAkpisKPO6Pp+0UEe84nAeps4JGd7lANef9ymNVBrYp7g29TePY/CGxf9oGLis3GFnpMNuyvmwK6vNseLgpX29NZvy09O7dXJmN2nnrqKQDeeeedsri8EMJEMnPy+N9vB/l1b6y+rVY1Zz59tPntiwRevwZrJsO+JYY2F2/o/j9oOVwKA4ria/wQVP8cLh2ESwdgxyzoMMbcUVUotb1c9NtnEyTZuR2LG7Mza9YsgoKCcHR0JDQ0lIiIiNseu3HjRjQaTYHHsWPHyjFiISqmG2tb3ZzoDGlbi3/Hdi480cnLgZ3z4MuWxolOiyEwZq86rVwSHVESWi3c9xmQX8Lgv2mQeNqsIVU0QZ6GZOec9Ozc1l0lOxEREQwdOpT27dsTG6v+wvzhhx/YsmVLqa63fPlyxo0bx+TJk4mKiqJz58707duX6OjoIs87fvw4cXFx+ke9evVK9fpCVBabT1yh/9dbOHwxBQBnexu+fqIl7z/UtPD1ddLi1QHI/74K16+qbXYu8NBcdd0jx9sMXBbiTmq1hbbPq9u5mfDny6DTmTemCqSqiz0eTmrdqnMyZue2Sp3srFy5kt69e+Pk5ERUVBRZWeo6OampqXzwwQeluuaMGTMYMWIEI0eOpFGjRsycOZOAgABmz55d5Hk+Pj5Ur15d/7CxkUGRQhRGp1P4ZsMpnvx2F9cycgAI8nLh9xc7cn+zGoWflHQOFvVWy/zfEDIQXtyhLvcgxN3q+TZUya/ddH4LRP1g3ngqmBvjdi4mXyczR8Y9FabUyc60adOYM2cO8+fPx87OUA21Q4cO7N27t8TXy87OJjIykl69ehm19+rVi23bthV5bsuWLfHz86Nnz55s2LChyGOzsrJISUkxeghRGVxJzeK5H/bwyZrj+lm+9zTy5Y+XOlLf163wk06ug4W94eoZdd/dH0asg4ELoUqt8glcWD97FxjwpWF/w/uQLbdkiuvGuB1FUW9Pi4JKnewcP36cLl26FGh3d3fn2rVrJb5eQkICeXl5+Pr6GrX7+vpy6dKlQs/x8/Nj3rx5rFy5kl9//ZUGDRrQs2dPNm/efNvXmT59Oh4eHvpHQEBAiWMVoqJZdTCO3jM3s+5oPKDOtnrl3vrMGxaKu+MtSzcoClyIhB8egqWPQFr+/39eDWDEGghoXc7Ri0ohuBs0vF/dTrsM2742azgVSW1PGaR8J6UeTejn58epU6eoXbu2UfuWLVsIDg4udUCaW1bAVRSlQNsNDRo0oEGDBvr99u3bExMTw6efflpoIgYwadIkJkyYoN9PSUmRhEdYrWsZ2bz9x2H+3H9R3+bpYs+njzWnewMf44NzMtUS/nsXQ/xh4+cCO8JjP4CLZ9kHLSqve96FE6tBlwtbv4DQp8DN946nVXZBXjJI+U5K3bPz/PPPM3bsWHbu3IlGo+HixYssXbqUiRMnMnr06BJfz8vLCxsbmwK9OPHx8QV6e4rSrl07Tp48edvnHRwccHd3N3oIYY32RifRZ2aEUaLTp0l11ozvUjDROb8d5nSE1a8bJzpVasHARfDUP5LoiLLnVRdCn1a3c9Jh43TzxlNBBN5Ua0cKCxau1D07r732GsnJyXTv3p3MzEy6dOmCg4MDEydO5KWXXirx9ezt7QkNDSU8PJyHHnpI3x4eHs4DDzxQ7OtERUXh5+dX4tcXwlooisKSHeeZ+vcRcvLUwTnujra892AIA5rXMO4pzcvJX7hzlvFFAtqqU8qbDQI7x3KMXlR63d6A/csgO1UdqNzzbXC+Tc0nARj37EhhwcLdVVGM999/n8mTJ3PkyBF0Oh2NGzfG1dX1zifexoQJExg2bBhhYWG0b9+eefPmER0dzahRowD1FlRsbCyLFy8GYObMmdSuXZsmTZqQnZ3NkiVLWLlyJStXrrybtyVEhXU9O4/JvxsXCWwTVI0vH29JdY9bkpaMq+pSD+duqmXl3xru/xyqNy2niIW4hYsXhD4J279Wb2cd/xdaDjF3VBatirM9VZztuJaRwzkZs1OoUic7169fR1EUnJ2dCQsL4/z58yxYsIDGjRsXmFFVXIMGDSIxMZGpU6cSFxdHSEgIq1atIjBQnZIYFxdnVHMnOzubiRMnEhsbi5OTE02aNOGff/7hvvvuK+3bEqLCOp+YzqglezkaZ5hhOLJTEK/3bVhwJeRLh2D5UEg6q+7b2MM9U6DtKFnPSphf4wfVZAfU5Ugk2bmj2p4u7Mu4xsXkTDJz8nC0k/+Pb6ZRlNItNdurVy8efvhhRo0axbVr12jYsCF2dnYkJCQwY8YMXnjhBVPHWiZSUlLw8PAgOTlZxu+ICmv90cuMX76PlMxcQC0S+PHAZgVr5ygK7FkIq/8HeWptLFx8YNAStbibEJZAp4OZIZASC1o7eO00OHqYOyqLNn75Pn6LUnt014zrQoPqtyknYUVK8v1d6gHKe/fupXPnzgD88ssv+Pr6cv78eRYvXsyXX355h7OFEKaQmpnDGysPMOL7PfpEJ9jLhT8KKxKYlQYrnoR/XjEkOn7N4bkNkugIy6LVQqMB6rYuR72VJYpkPEhZbmXdqtTJTkZGBm5uaua4du1aHn74YbRaLe3ateP8+fMmC1AIUbhtpxLoMzOCZbtj9G29m6hFAuvdWiQw6Rws7GW8QnnbUTAiHDz8yydgIUqi8U0TU27+dysKJYOUi1bqZKdu3br8/vvvxMTEsGbNGv04nfj4eLkdJEQZysrNY8qfh3liwU5ir10H1NtW7z8UwpyhobjdWiTw2CqY190wpdzBAx7/Efp+BLYO5Ry9EMUU0BZcq6vbp9ZDplS7L0ptWRC0SKVOdt5++20mTpxI7dq1adu2Le3btwfUXp6WLVuaLEAhhEHstes8NncH3207p29rF1yNNeO6MKRtoPG08rQrsOJpWDbYsHinZ114dj007Fe+gQtRUlotNM6/lZWXBSfWmDceCydVlItW6tlYAwcOpFOnTsTFxdG8eXN9e8+ePY3q5AghTCPi5BVe/imKpPwFPO1ttfyvb0OGt6+NVntLlfGT4fDbKMhIMLTV76OuUu5UpfyCFuJuNH4Ads1Tt/d+D80eNW88FszD2Y6qznYkZeTI6ueFuKs6OzdWGb9ZmzZt7iogIYSxGyuVz1h3Qr+AZ0A1J2YPCSWk5i0zVHKzYP1Uw7RdAKeq0OcjaPaYuiiWEBVFrQ5qb2TiKbUe1JXj4N3gzudVUrW9XEiKvsallEyuZ+fhZC/Tz2+4q2Rn/fr1rF+/nvj4eHQ6ndFzixYtuqvAhBAQn5LJaysPsPH4FX1bj4Y+fP5YCzycbxmbE7ML/ngJEo4b2ur3gQFfg6t3OUUshAlptRA2AtZMUvd3L4D7PjFvTBYsyNOFqOhrAJy/mk7D6jJ+9oZSj9l599136dWrF+vXrychIYGkpCSjhxCi9BRF4c/9F7n38836REejgYm96rNgeJhxopNxFf6ZqM62upHo2NirvTmDl0miIyq2Fk+ArZO6ve8ntYSCKFTtmxcElXE7RkrdszNnzhy+++47hg0bZsp4hKj0rqZn89bvh/jnYJy+zcvVgc8HNadzvfzEJTMFEk/C2QjYMgMykw0XqNFS7c2pHlLOkQtRBpyqqGN19i5W18s6+DOEPWPuqCzSzcmOLAhqrNTJTnZ2Nh06dDBlLEJUeuFHLjPp1wMkpGXr2+5v5sd7D4RQ1cUeYnarC3dGbyt4sp0zdJsE7UaDzV3doRbCsoSNUJMdgK1fqrdn3WsUfU4lVPumwoLSs2Os1LexRo4cyY8//mjKWISotJKv5/DKz/t5dvEefaJTxdmOrwa35OsnWlFVkwYrn4WF9xSS6GigxVAYsxc6viyJjrA+NVqodXdAXc9tXnc18RdGjG5jSa0dI6X+rZiZmcm8efNYt24dzZo1w87OeLDkjBkz7jo4ISqDzSeu8PrKA8QlZ+rbejb0YfojTfFxc4TUy7B4AFw5ZjipWh2o3RE860Hde8C3sRkiF6IcDfgaljwCydGQdgm+uw+e+gcCZAbwDe6Odni62JOYni3Jzi1KnewcOHCAFi1aAHDo0CGj5zQyvVWIO0rPyuWDVUdZujNa3+bmYMvb/RszMNRf/f8o5SJ8P0AdnwPqNPLukyH0aenBEZWLd311Hbefn4TzWyAvGzZ9BENXmjsyi1Lby4XE9Gwup2SRkZ2Ls738noC7SHY2bNhgyjiEqFR2nknk1V8OEH3VMIiwU10vPhrYjJpVnCA7AyK/g60zIe2yeoBHADz5J1QLNkvMQpidixcM/x2+agXXotVlJK6ehWpB5o7MYgR6OhN5Xp0RfS4hg8Y1ZPo53GWdnWvXrrFw4UKOHj2KRqOhcePGPPPMM3h4eNz5ZCEqocycPD5dc5yFW8/qCwQ62dnwv/saMqRtIFoNsO9HdRByuqG2DlUC4am/oUots8QthMWwsVN7Nte/CyhqZeV7ppg7KosRdMsaWZLsqEo9QHnPnj3UqVOHzz//nKtXr5KQkMCMGTOoU6cOe/fuNWWMQliFAxeu0e/LCBZsMSQ6rWtX5d+xnRnWvjbalBh1TMLvLxgnOg3vh2dWS6IjxA0th4I2f5zo3h8gN7vo4ysRGaRcuFL37IwfP54BAwYwf/58bG3Vy+Tm5jJy5EjGjRvH5s2bTRakEBVZbp6OWRtP8+X6k+Tq1CzH3lbLq70a8EynIGy0GnUtq19GQNZN9XIaDYBub4BvEzNFLoSFcvWBRv3h8K/q+m9H/4SmA80dlUUIksKChSp1srNnzx6jRAfA1taW1157jbCwMJMEJ0RFd+ZKGhN+3s++mGv6tqY1PZjxWHPq+bqBokDEDHU9K/K7e9xrwv2fQ/3eZolZiAoh7Bk12QHYs0iSnXyBRrV2pLDgDaVOdtzd3YmOjqZhw4ZG7TExMbi5ud11YEJUZIqisGRnNB/8c5TrOXkA2Gg1vNitDmN61sPORgsXo2D1JIjebjixUX944BtwlHFvQhSpdifwqg8JJ+D8Vrh6RgbvA26Odni52pOQls1ZuY2lV+oxO4MGDWLEiBEsX76cmJgYLly4wLJlyxg5ciSDBw82ZYxCVCiXUzJ56tvdvPX7IX2iE+Tlwi+j2jOhVwPsctPhzzFqYbSbE53uk+HRxZLoCFEcGg20GGLYP7DCfLFYmNr5g5SvpGaRnpVr5mgsQ6l7dj799FM0Gg3Dhw8nN1f9YdrZ2fHCCy/w4YcfmixAISqK69l5LNp6ljkbT5N60y+YYe0CmXRfQ7XexcUo+OUZ9a/QGzzrQt+PoW5PM0QtRAXWdCCsmwIocGA5dH1NTYIqudpeLuzJn35+PlGmn8NdJDv29vZ88cUXTJ8+ndOnT6MoCnXr1sXZ2fnOJwthRfJ0Cr/uvcBna09wKcVQBdnHzYGPBzajWwMfdaXm9Z/D1i9Al6MeYO+q9ua0Hgm29maKXogKzMNfvZ11LgKunobYSPCXMaMBVQ3fwxeSJNmBu6yzA+Ds7ExIiLq6slROFpXNphNXmL7qKMcuperbtBoY1LoWr/VuoC7eefAXWPM/Q3FAgBqtYOBCGWMgxN1q/ria7IDauyPJDv5VnfTbF5KumzESy1HqMTsACxcuJCQkBEdHRxwdHQkJCWHBggWmik0Ii3U1PZunv93Fk4t2GSU69zTyYe34Lkx/uClVnWzVLvaVIwyJjtYOOr8Cz6yRREcIU2jUH2wd1e1DKyEvx7zxWICbk52YJJmRBXfRs/PWW2/x+eefM2bMGNq3bw/A9u3bGT9+POfOnWPatGkmC1IIS3IoNpnnf4gk9prhL6Zm/h5M6tuI9nU81YacTPjzJTh406DJhvfDvVPBs045RyyEFXP0gAZ94fBvkJGoLiHRoI+5ozKrgGo338aSnh24i2Rn9uzZzJ8/32jm1YABA2jWrBljxoyRZEdYpd+jYnl95QGycnUAeLk68Nb9jejfrAZarUatm3P0Lwh/C5LOqSdptOoA5DbPmi9wIaxZs8fVZAfUW1mVPNnxdXfEVqshV6dIspOv1MlOXl5eocUDQ0ND9bOzhLAWuXk6pv97jIVbzurbWgRUYc7QUKp75Heh51yH5cPgVLjhRFsnGLgIGt5XzhELUYnU7QlO1eD6VTi+CjJTwLHyDsq10WqoUcWJ6KsZXJDbWMBdjNkZOnQos2fPLtA+b948hgwZUsgZQlRMiWlZDFu4yyjRGRQWwPLn2xkSHZ0OfhtlnOgEdYFn/5NER4iyZmMHIY+o27mZ6vIRldyNcTupmbkkX5dxTHc1G2vhwoWsXbuWdu3aAbBjxw5iYmIYPnw4EyZM0B83Y8aMu4tSCDO5dXyOnY2Gd/o3YUjbWsazD/97D478rm7bucDDc9UxOjJDUYjy0WwQ7J6vbh9Yri4WWokZz8jKwMOpchcrLXWyc+jQIVq1agXA6dOnAfD29sbb25tDhw7pj5Pp6KKi+nXvBSb9elA/PsfbzYHZQ1oRVrua8YH7l8GW/IReo4VHv5V1rYQob/5h6gzHq2fgbAQkx4JHTXNHZTb+VY0HKTepIclOqWzYsMGUcQhhMXLydHyw6ijfbj2nb2tZSx2f4+vuaHxwwkn4e7xhv8+HkugIYQ4ajdq7s3E6oMChX6DjWHNHZTZG08+vyridUo/ZuX79OhkZhh/g+fPnmTlzJmvXrjVJYEKYQ8zVDIYs2GmU6AxuE8Cy59oZEp30RMjNUh+/PAM5+f8ftBwGbZ8v/6CFEKqmjxq29y9TZ0dWUjL93Fipk50HHniAxYsXA3Dt2jXatGnDZ599xgMPPFDowOXimjVrFkFBQTg6OhIaGkpERESxztu6dSu2tra0aNGi1K8tKi9FUVi68zx9Zm5m19mrgDo+54OHmjL94WY42NqovzjXT4VPguHDWjC7A1w6oF7Aqz70/ciM70AIgWcd8G+jbscfgdPrzRuPGUkVZWOlTnb27t1L586dAfjll1+oXr0658+fZ/HixXz55Zeluuby5csZN24ckydPJioqis6dO9O3b1+io6OLPC85OZnhw4fTs6cspChKLvbadYYv2sXk3w6Rnq2uUl7Dw5Flz7Xjiba11IMUBda9AxGfqfu5mZB4St22sYdHFoK9ixmiF0IYaf+iYXvjh5W2d8fHzRE7G3XMrEw/v4tkJyMjAzc3NwDWrl3Lww8/jFarpV27dpw/f75U15wxYwYjRoxg5MiRNGrUiJkzZxIQEHDHnqLnn3+eJ554Ql/JuShZWVmkpKQYPUTl9df+i/SZuZmIkwn6tsdbB7BmfBdCA/MHIiuKuuzD1i8MJ7r7G7b7TAe/ZuUTsBCiaI0GgE9jdfvC7krbu3Oj1g5AbNJ1lEqa9N1Q6mSnbt26/P7778TExLBmzRp69eoFQHx8PO7uJS/mlJ2dTWRkpP46N/Tq1Ytt27bd9rxvv/2W06dP88477xTrdaZPn46Hh4f+ERAQUOJYRcWXkZ3La7/sZ8xPUaRmqkUwq7s78v0zbfjwkWa4OdqpByoKrH8Xts40nHz/5zDhMIw/DC/vU1ctF0JYBq0Wur5u2K/EvTv6WjtZuaRcr9zFfkud7Lz99ttMnDiR2rVr07ZtW32vytq1a2nZsmWJr5eQkEBeXh6+vr5G7b6+vly6dKnQc06ePMkbb7zB0qVLsbUt3sSySZMmkZycrH/ExMSUOFZRsR2KTeb+L7fw854L+rYHWtRgzfgudK3vbTjwxhidLZ8b2vrNgLBn1G0Pf6gWVE5RCyGKrdEA8Gmibl/Yra6XVQn5VzEMUq7sC4KWeur5wIED6dSpE3FxcTRv3lzf3rNnTx566KFSB3RrXR5FUQqt1ZOXl8cTTzzBu+++S/369Yt9fQcHBxwcHEodn6i4FEXh263n+PDfY2TnqbVznO1teO+BEB5uVdP435miQPjbsO2m8Wf9PoPWI8o5aiFEiWm10O11+Hm4ur/lc6h3j3ljMoNbCwuG1Ky8tXbuqoJy9erVqV69ulFbmzZtSnUtLy8vbGxsCvTixMfHF+jtAUhNTWXPnj1ERUXx0ksvAaDT6VAUBVtbW9auXUuPHj1KFYuwPtm5Ot76/RDL9xh68prW9ODLwS0J8rplYHFeLvw9DqJ+MLTd96ncrhKiImnYX50lmXACzm+BC3vUwoOViEw/Nyj1bSyAiIgIhg4dSvv27YmNjQXghx9+YMuWLSW+lr29PaGhoYSHhxu1h4eH06FDhwLHu7u7c/DgQfbt26d/jBo1igYNGrBv3z7atm1bujclrE5yRg5PfbvLKNF5tnMQK1/oUDDRybkOvzx1U6KjUW9dyYrlQlQsWi10eNmwf/MEg0pCpp8blDrZWblyJb1798bJyYmoqCiysrIAtcflgw8+KNU1J0yYwIIFC1i0aBFHjx5l/PjxREdHM2rUKEAdbzN8uNotqdVqCQkJMXr4+Pjg6OhISEgILi4yDVjA+cR0Hpq9lW2nEwGwt9Xy1eCWTO7XGHvbW/75p16G7/rB0b/Ufa2dumK53LoSomJq9hi45t99OPoXJJ42bzzlzHjJiMo9ZqfUyc60adOYM2cO8+fPx87OTt/eoUMH9u7dW6prDho0iJkzZzJ16lRatGjB5s2bWbVqFYGBgQDExcXdseaOEDfsOXeVh2Zt48yVdAA8Xez56dl29G9eo+DB8cdgfg+IjVT37V3hiWUQ8nA5RiyEMClbB2j3Qv6OYjwGrxLwcXO4qdZO5e7Z0SilnHzv7OzMkSNHqF27Nm5ubuzfv5/g4GDOnDlD48aNyczMNHWsZSIlJQUPDw+Sk5NLNWVeWKY/9sXy6ooD+oHIdX1c+fap1kb3sPVSL6uJTkr+7Cx3f3hiOVQPKceIhRBlIjMZZjSB7FSwcYBxB8Gt4DhQa9Xtkw2cS8zA1cGWg1N6WdXi3CX5/i51z46fnx+nTp0q0L5lyxaCg4NLe1kh7kp2ro53/zrM2GX79IlOp7perHyhQ+GJTs51WPaEIdHxaw7P/ieJjhDWwtEDwp5Wt/OyYNdc88ZTzm7cykrLyiX5eo6ZozGfUic7zz//PGPHjmXnzp1oNBouXrzI0qVLmThxIqNHjzZljEIUy8Vr1xk0b3uBRTy/fbo1Hk52BU/ITIZfn4PYPeq+uz88saJS/dUnRKXQ7gV1DB7A7gWQlWreeMqR8ernlfdWVqmnnr/22mskJyfTvXt3MjMz6dKlCw4ODkycOFE/FVyI8rLxeDzjl+8jKUP9y8XeRstb/RsztG2tgt22ujzYswg2TocMdeAydi7qGB1JdISwPu41oNkg2LdE/SNn72LjNbSsmPH08wya+lfOWjt3VWfn/fffZ/LkyRw5cgSdTkfjxo1xdXU1VWxC3FGeTuGLdSf4asMpfUV4/6pOzBrSimb+VQqeoMuDX56GI38Y2mwcYOBCqN60XGIWQphBhzFqsgOw/Rto8xzYFNLja2Vk+rmqVLexcnJy6N69OydOnMDZ2ZmwsDDatGkjiY4oVwlpWQxftJMv/zMkOvc08uGfMZ0LT3QUBVa9apzohDwCL+2GBn3LJWYhhJn4NIT6+f+fp8TCwRXmjaec3FpFubIqVc+OnZ0dhw4dsqpR3aJi2XX2Ki/9uJf4VLW+k41Ww6u9G/Bc52C02tv8u9z0MexZqG5rbWHQUmjQp5wiFkKYXcexcOJfdXvTR9D0Uavv3TGutSM9OyU2fPhwFi5caMpYhLgjRVGYu+k0g+fv0Cc6Pm4O/DiyLaO61ik80cnLhVWvwcabil0+MEsSHSEqm8D2ENRF3U46B1FLzBpOefB2dcDeRv2qr8zJTqnH7GRnZ7NgwQLCw8MJCwsrULF4xowZdx2cEDdLzsjhlRX7WXf0sr6tQx1Pvni8Jd5ut1nc9XoSrHgKzmw0tPWaBs0HlWmsQggL1eNtWJi/KOjmT6D5YLBzNG9MZUir1VCzqhNnE9K5kJRx28W1rV2pk51Dhw7RqlUrAE6cOGH0XGX8QYqydfBCMqN/jDSaOjmmR13G3VMfm9vdtoqNVBOda/lVt7V2cP/n0GpY2QcshLBMAa2hfh84sVoduxP57U1Vlq2Tf36yk56dR1JGDtVc7M0dUrkrdbKzYcMGU8YhxG0t3Xmed/88oi8SWMXZjs8HtaB7A5/bn7RrPqyeBLr8IlrOXjBoidqNLYSo3LpPVpMdgM2fqtPSnauZN6YydOsaWZUx2bmrVc+FKEu5eTre/uMQk387pE90WgRU4Z+XO98+0VEUWDcFVk00JDr+beD5TZLoCCFUfs3UmZgAGQmw5n/mjaeMyfRzSXaEhUrJzOHp73azePt5fdtTHWrz8/PtqVnFqfCTdDr49zXY8rmhrf1L8PQq8PAv44iFEBVKr/fBIb/A3v6f4MRa88ZThmT6uSQ7wgJFJ2bwyKxtRJxMAMDORsOnjzZnyoAm2NsW8U92/buwa55hv99n0Pt9q59aKoQoBXc/6HPTDM2/x0FmitnCKUsy/VySHWFh9py7yoOztnIyPg1Qx+csGdGWgaF36JmJ2Q1bv1C3NVp4cDa0HlnG0QohKrQWQ6BOD3U7JRZWv2HeeMpIgNzGkmRHWI7foi7wxPydXE3PBiDY24XfR3ekbbBn0SfmZsGfLwH5ZZR7vg0tnijbYIUQFZ9GA/2/APv86v/7lsKhX80bUxnwcnXQ94pX1ttYJZqNNWHChGIfK3V2RHHl6RRmrjvBV/+d0rd1quvFN0+0wsO5GLegNn8KV46p234toP2YsglUCGF9qtSC+z6F30ep+3+Pg4A2VjXOT6vV4F/FiTMJ6cRcvV4pa+2UKNmJiooq1nGV7YcoSi8hLYvxy/fpx+cAPNG2Fu8OaIKdzR06Hq/FwIb3Yf8ydV9rCw98AzZ3tb6tEKKyaf44nFwLh39VV0X/bRQ8+Zfa82Ml/Ks5cyYhnes5eVxNz8bT9TaFWK1Uib4VpLaOMKXtpxMZuyxKv+yDVgOT+zXmmY6175ww718Of46BvCxDW+eJUD2kDCMWQlgljUYtOHphNyTHwLkIOPonNH7A3JGZzK3TzytbsiNjdkS5y83T8eX6kwxZYFjfytvNgaUj2zGiU9CdE51Lh4wTHccq6jTSrq+XbeBCCOvlVEW9nXXDunchL8ds4ZhaZa+1c9f9/UeOHCE6Oprs7Gyj9gEDBtztpYUVOnYphVdXHOBgbLK+rVNdLz4f1OL261vdLDsDVo4wJDpNH4X7PgGnqmUUsRCi0qjfGwI7wvmtcPU07P3eamZ13lpFubIpdbJz5swZHnroIQ4ePIhGo0FR1JkwN/4qz8vLM02Ewipk5+qYtfEU32w4RU6e+m9Fq4Hx99RndPe6t1/f6maKAmsmGQYj+zaFAV9b9SJ+QohypNHAvVNhQU91f+NH0OxxcHA1b1wmUNl7dkp9G2vs2LEEBQVx+fJlnJ2dOXz4MJs3byYsLIyNGzeaMERR0R28kMyAr7cwc91JfaJTz8eVlS90YEzPesVLdDKT4ZdnIPI7dd/WCQYulERHCGFa/mGGsTrp8bBrrnnjMZHKXkW51D0727dv57///sPb2xutVotWq6VTp05Mnz6dl19+udgzt4T1yszJ48v1J5m7+Qx5OjXJsdFqGN2tDi/1qIuDrU3xLhR3AJYPMaxeDuqtK+8GZRC1EKLS6/E2HPkTUGD3Iug4DrTF/H1lobxdHXCw1ZKVqyNGenaKLy8vD1dXtWvPy8uLixcvAhAYGMjx48dNE52osCLPJ9HvywhmbTytT3Qa+bnzx4sdeaVXg+InOsmxsOQRQ6Lj6AGPfg+thpVR5EKISs+rLtTrpW6nXIATa8wbjwloNBp9786FpAz90JPKotQ9OyEhIRw4cIDg4GDatm3Lxx9/jL29PfPmzSM4ONiUMYoKJDMnj0/XHGfh1rPc+H/JzkbDyz3qMapbnTvXzrlZznW1Ryc9Xt2v0RIeW6wWARNCiLLUegSczE9y9iyEhveZNx4T8K/qzOkr6WTm6EhMz8arEk0/L3Wy8+abb5KRod73mzZtGvfffz+dO3fG09OT5cuXmyxAUXHsj7nGhJ/3cfpKur6tub8HHw9sToPqbiW7WF6OOr38Yv7t0Cq1YMhKcLnD0hFCCGEKde8Bj1qQHA2n1sPVs1AtyNxR3ZWbx+1EX82oVMlOqW5j5eTk8OGHH9KkSRMAgoODOXLkCAkJCcTHx9OjRw+TBiks3/bTiQycs02f6NjbapnUtyErX+hQ8kQnbj/M7w4HV6j7ds7w+E+S6Aghyo/WBsKeyt9RIPJbc0ZjErU9XfTb5xPTizjS+pQq2bGzs+PQoUMFir9Vq1ZNloqohGKuZjB6aaR+plUzfw9WvdyJ57vWwbYkt61AnW01rztcOqjua2zgoblSGVkIUf5aDgdt/vp8UUsgu2InCIGehlo75xIq14ysUg9QHj58OAsXLjRlLKICSs/K5dnFe0jKUCuNdq3vzcoXOlDXp4S9OQDntsDfE0DJr9Hk0wRGhkNjKVAphDADV29o8qC6nZEIOyv2NPQgL0PPzrlK1rNT6jE72dnZLFiwgPDwcMLCwnBxcTF6XlY9t346ncKEn/dx7FIqAMFeLnw5uGXJBiHfkBwLK54yJDqtR0Lv6WBrb7qAhRCipLq8CodWgqKDrTMh7OkKW7E9oJozGo1an/VcYuXq2Sl1snPo0CFatWoFwIkTJ4yek1tZlcMX60+y5vBlANwcbJn/ZBgeTnYlv1B2Bqx4EtKvqPvB3aHvxxW+roUQwgp4N4AWT6i3sTKTYctMuPddc0dVKo52NtTwcCL22nXOJUjPTrHICuiV278H4/hi/UlArbD+5eCW1PEuRUn1zGT4cZC62jCosx8GLpJERwhhObq+AQd+hrxs9VZW21Hg7mfuqEol0NOZ2GvXSb6ew7WMbKo4V47e81KP2YmOjr5tUaLo6OhC24tj1qxZBAUF4ejoSGhoKBEREbc9dsuWLXTs2BFPT0+cnJxo2LAhn3/+ealfWxTP0bgUJvy8X7//ep+GdG/oU/ILZVyF7wdA9HZ138EdHl8CztVMFKkQQphAlQBo/ay6nXsd1r5p3njuQu2bxu2crUS9O6VOdoKCgrhy5UqB9sTERIKCSleLYPny5YwbN47JkycTFRVF586d6du3722TJxcXF1566SU2b97M0aNHefPNN3nzzTeZN29eqV5f3FliWhbPLt7D9Rx1bM2DLWrwfJdSFJHU6eDn4RC3T913qgZP/gV+zU0XrBBCmErnCWoFd4BDv8CRP8wbTynVvmlG1vlKNG6n1MmOoiiFjs1JS0vD0bF0izPOmDGDESNGMHLkSBo1asTMmTMJCAhg9uzZhR7fsmVLBg8eTJMmTahduzZDhw6ld+/eRfYGZWVlkZKSYvQQxZOdq+OFJXv1K+Y28/fgw0ealW6M1t7v4Vz+5+TqC0+vghotTBesEEKYkosX9P3EsP/3eEgr+Ae/pbu51k5l6tkp8ZidCRMmAOog5LfeegtnZ0OWmJeXx86dO2nRokWJA8nOziYyMpI33njDqL1Xr15s27atWNeIiopi27ZtTJs27bbHTJ8+nXffrZiDy8xJURTe/P0gu85dBcDbzYG5w0JxtCvF2JqUixD+tmH/oTng08hEkQohRBlp9hgc/ROO/a1ORf9nPAxaYu6oSqR2JZ1+XuJk58Zq5oqicPDgQeztDYOb7O3tad68ORMnTixxIAkJCeTl5eHr62vU7uvry6VLl4o819/fnytXrpCbm8uUKVMYOXLkbY+dNGmSPmEDSElJISAgoMTxVjYLt5zl5z0XAHCw1TJ/eBh+Hk53OKsQebnqX0RZ+T1qLYZCHam4LYSoADQauP9zdZxhRiIc/Quid0KttuaOrNhqVdLp5yVOdm7Mwnr66af58ssvcXMrRfG4Itx6S+R2t8tuFhERQVpaGjt27OCNN96gbt26DB48uNBjHRwccHCoPOuBmMKGY/F8sOqofv+TR5vTIqBKyS90ch2s+R8kHFf3XX2h9+174YQQwuK4+sA978KfL6n7EZ/CkBXmjakEHO1s8HN35GJyZqWafl7qMTv16tVjxYqCH/CiRYv46KOPSnw9Ly8vbGxsCvTixMfHF+jtuVVQUBBNmzbl2WefZfz48UyZMqXEry8KF52YwZifotDlT7x7uUddBjSvUbKLKAr8+zosfcSQ6Gi00P+LClucSwhRiTV/HDzy7wicXAsX95k1nJK6cSvrxvTzyqDUyc68efNo2LBhgfYmTZowZ86cEl/P3t6e0NBQwsPDjdrDw8Pp0KFDsa+jKApZWVklfn1RkKIovPPnIdKycgHoG1KdcffUL/mFts6EnTf9m/BvDSPCoUFf0wQqhBDlycYOOo417Ed8Zr5YSiGwEg5SLnVRwUuXLuHnV7Cokre3N3FxcaW65oQJExg2bBhhYWG0b9+eefPmER0dzahRowB1vE1sbCyLFy8G4JtvvqFWrVr6pGvLli18+umnjBkzppTvStxs3dF4NhxXZxtUd3fkk0ebo9WWcObVwV9g3RTDfr/PIGyEeu9bCCEqqpbDYPMnkHZZHbQcfwx8CnYAWKIgL+Pp5y1rWX8Pe6mTnYCAALZu3Vqgps7WrVupUaOEtznyDRo0iMTERKZOnUpcXBwhISGsWrWKwMBAAOLi4oxq7uh0OiZNmsTZs2extbWlTp06fPjhhzz//POlfVsi3/XsPKb8eVi//9b9jXF1KOE/l3Nb4fcXDPs93lLXvBJCiIrOzhE6jDEUGNw1Vx28XAFIz04JjBw5knHjxpGTk0OPHupsmvXr1/Paa6/xyiuvlDqg0aNHM3r06EKf++6774z2x4wZI704ZWTWxlPEXlPr6XSq68V9TauX7AJXjsOywWp5dYBWT0Ln0v+7EEIIixP6FPw3DXIz4ejfcN+nFWKpm5tXPz9fSaaflzrZee2117h69SqjR48mO1v9QnN0dOT1119n0qRJJgtQlL9zCenM3XQGADsbDVMGNClZ4cDUy7B0oLruFUDde6DfDLl1JYSwLg5u6u+3Y39DejzE7ILA9uaO6o5qVTPcxjpbSaafl3qAskaj4aOPPuLKlSvs2LGD/fv3c/XqVd5+++07nyws2rR/jpCdpwNgRKdg6vqUYIHP7HT48TG4ln+7sXpTePQ7sCl1Xi2EEJarUX/D9tG/zBdHCairn6srHVSWnp1SJzs3uLq60rp1a0JCQqR+jRXYdOIK647GA+Dr7sCYHnWLf3JeLvzyjGG9K3d/eGKF+tePEEJYo/p9QJv/x9zRv9RSGxXAjXE71zIqx/Tzu0p2IiIiGDp0KB06dCA2NhaAH374gS1btpgkOFG+cvJ0TP3LMCj5jb4NcSnuoGRFgX9fgxOr1X0HDxj6C7gXnLEnhBBWw6kKBHVVt5OjDX/sWTjjZSOs/1ZWqZOdlStX0rt3b5ycnNi7d6++tk1qaioffPCByQIU5eev/Rc5fUXt0mxVqwoPtqhZ/JOjlsCeheq21g4G/SDrXQkhKocKeCvr5tXPK0Ml5VInO9OmTWPOnDnMnz8fOzs7fXuHDh3Yu3evSYIT5WvZ7hj99ut9GhZ/UHLiabVC8g0DvoLgriaOTgghLFTDfkD+78vDv0NOpjmjKZbKtiBoqZOd48eP06VLlwLt7u7uXLt27W5iEmZwNiGdXWfVFc2DvV1oE1SteCfm5cDKEZCT/z9Ly2HQovB1yYQQwiq5+kBgfqX/q6fhu/sg5aJ5Y7qD2jfV2pGenSL4+flx6tSpAu1btmwhODj4roIS5W9l5AX99qCwgOL36mz6GC5GqdvV6kCfD8sgOiGEsHA93gRbJ3U7NhLmdYOEk2YNqSiBN9/GkjE7t/f8888zduxYdu7ciUaj4eLFiyxdupSJEyfetiigsEw6ncJvUeoAcxuthodaFXOsTvIF2PqFuq21hUcWgEMJpqkLIYS1COwAI9aCRy11P+0yhL9j3piK4Ghng1/+9PPKcBvrrooKJicn0717dzIzM+nSpQsODg5MnDiRl156yZQxijK240yivlpyl3pe+Lg5Fu/ETR9BXv6iq+1egJqtyihCIYSoAPyawXMbYXYHSLukzk5NvQxuvuaOrFC1PV2IS87UTz+v4mxv7pDKzF1NPX///fdJSEhg165d7NixgytXrvDee++ZKjZRTn7Za7iF9XAr/+KdlHAKopaq2w7u0GlCGUQmhBAVjIsntByibit5sP9H88ZThNpeledW1l0XFXR2diY0NJTWrVvj6iq3MCqa9KxcVh+6BICboy33Ni7mXyAbpqn/IwN0eBmcizmgWQghrF3LoYbtqCUWW2jw5kHK1l5J+a6SnYULFxISEoKjoyOOjo6EhISwYMECU8UmysHqQ5fIyFaTlvub1cDRrhiL2F3cB4d/U7ddvNVbWEIIIVTVgqF2Z3U78RREbzdvPLdRmVY/L/WYnbfeeovPP/+cMWPG0L69uvDZ9u3bGT9+POfOnWPatGkmC1KUnZU33cIaGFrMgcn/3XSrsvNEGZQshBC3ajUczkWo23sXG6amWxDj1c+t+zZWqZOd2bNnM3/+fAYPNtRUGTBgAM2aNWPMmDGS7FQAsdeus/1MIqD+o29Vq+qdTzq3FU6tU7c9akHY02UYoRBCVFCN+oOjB2Qmq4UG73nX4gYqG61+buU9O6W+jZWXl0dYWFiB9tDQUHJzc+8qKFE+ftt7QX8r+eGWNe9cW0dRYP27hv1ub4CtLP4qhBAF2DlB8yfU7dzrsH6qeeMphJO9Yfq5jNm5jaFDhzJ79uwC7fPmzWPIkCF3FZQoe4qisHJvrH6/WLV1TqyBmJ3qtlcDaP54GUUnhBBWoMtEdVFkgH1L1GKDFuZGccGkjBySM3LMHE3ZKfVtLFAHKK9du5Z27doBsGPHDmJiYhg+fDgTJhimIs+YMePuohQmty/mmr7bsn2wJ/5VnYs+ISsN1vzPsN/jTdAWYzCzEEJUVi5eag/4mknq/r+vwzNrQXvXE6FNJsjLhR1n1KWCziam08K5inkDKiOlTnYOHTpEq1ZqEbnTp08D4O3tjbe3N4cOHdIfV+xlB0S5+u9YvH77oZbF6NX593V1zRcA/9bGq/wKIYQoXJtnIfI7SDgOF3bDgeUWtX5gsJdhgsmZK2m0CKhivmDKUKmTnQ0bNpgyDlHOIk4m6Le7NvAu+uBDK9UuWAA7F3hoLkgSK4QQd2ZjB32mw5KH1f21k6F+b4upTVbHxzAj6/SVNDNGUrZK3Je2c+dO/v33X6O2xYsXExQUhI+PD8899xxZWVkmC1CYXnJGDgcuXAOgvq8rvu5FLA+REgd/jTPs9/sUPOuUaXxCCGFV6vaExg+o2xmJEP62eeO5SR1vQ8/O6XjrHaRc4mRnypQpHDhwQL9/8OBBRowYwT333MMbb7zBX3/9xfTp000apDCt7WcS0OXPwupU9w69OrvmQVaKut30UWhuOd2vQghRYfT5COzd1O2oH9QyHhbAv6oz9jZqKiA9OzfZt28fPXv21O8vW7aMtm3bMn/+fCZMmMCXX37Jzz//bNIghWndfAurcz2v2x+Ym63+Twnqqua9psntKyGEKA13P7jnplXQ/x4Huea/C2Kj1ejXyDqXmE5uns7MEZWNEic7SUlJ+PoaCiNt2rSJPn366Pdbt25NTEyMaaITZWLLKTXZsbPR0Da4iPvGx/6C9CvqdsP7wa16OUQnhBBWKuwZqJlfny7hBGz9wrzx5LtxKysnT+FC0nUzR1M2Spzs+Pr6cvbsWQCys7PZu3evfrkIgNTUVOzs7EwXoTCp6MQMfVnwVrWq4mxfxBj13YsM261HlHFkQghh5bQ20H8maPLLdmz+FBJOmTUkuGXcjpXeyipxstOnTx/eeOMNIiIimDRpEs7OznTu3Fn//IEDB6hTRwawWqqIU1f020Xewoo/Bue3qNte9Q2L2gkhhCi96k2h/Yvqdl4W/DPe7KuiV4YZWSVOdqZNm4aNjQ1du3Zl/vz5zJ8/H3t7e/3zixYtolevXiYNUpjOFqPxOkUMTt4937Ad9oyM1RFCCFPp9oa6tiDA2c1wcIVZw6kMM7JKXGfH29ubiIgIkpOTcXV1xcbGuIruihUrcHWVVbAtUZ5OYdtpdeFPDyc7Qmp6FH7g2c2wJ/8Wlq2TLAshhBCmZO8C98+ApQPV/S2fq7NdzfRH5c2rn0vPzi08PDwKJDoA1apVM+rpEZbjYGwyydfVtU861vXERlvI/1ipl+GXEaDkj8jv/Ao4FWM1dCGEEMVX714IaKtuxx+B8+abiu7maIevu7qo8xkrXf3cchboEGVuy0nDeJ1C6+vo8mDlCEjPX0oiuDt0nlDwOCGEEHevzXOG7V3zzBcHhltZV9OzuZqebdZYyoIkO5XIHevrHP4NzkWo225+8PB8WexTCCHKSqMB4OKjbh/9G5JjzRbKzeN2zljhrSyLS3ZmzZpFUFAQjo6OhIaGEhERcdtjf/31V+699168vb1xd3enffv2rFmzphyjrTjSs3LZG50EQKCnMwHVClnlfM+3hu0HvgbXO1RXFkIIUXq29hD2tLqt5EHkt0UfX4bqeFv3uB2LSnaWL1/OuHHjmDx5MlFRUXTu3Jm+ffsSHR1d6PGbN2/m3nvvZdWqVURGRtK9e3f69+9PVFRUOUdu+XadvUpOnjq9sVPdQnp1Ek4aTzWv07PgMUIIIUwr9Gm1Qj2oq6ObqapyHZ+ba+1Y37gdi0p2ZsyYwYgRIxg5ciSNGjVi5syZBAQEMHv27EKPnzlzJq+99hqtW7emXr16fPDBB9SrV4+//vqrnCO3fJtO3KG+TuR3hu1WT8pUcyGEKA/uftCov7qdfgUO/mKWMILlNlb5yM7OJjIyskCNnl69erFt27ZiXUOn05Gamkq1ardfAiErK4uUlBSjR2VwI9mx1WrocGvPTm4W7PtR3baxl8U+hRCiPLV70bC9/RuzFBn0c3fEyU4doyk9O2UoISGBvLw8o3W3QF2e4tKlS8W6xmeffUZ6ejqPPfbYbY+ZPn06Hh4e+kdAQMBdxV0RnE9M52z+dMJWgVVxd7xlOY+jf8H1q+p2owHg4lnOEQohRCUW0Br826jb8YfhzMZyD0Gr1RCcP24n+moGWbl55R5DWbKYZOcGzS23TxRFKdBWmJ9++okpU6awfPlyfHx8bnvcpEmTSE5O1j8qw6Klm2+6hdW1fiGDjm++hRX6VJnHI4QQ4hbtb+ndMYMbM7LydArR+WsoWguLSXa8vLywsbEp0IsTHx9foLfnVsuXL2fEiBH8/PPP3HPPPUUe6+DggLu7u9HD2t08Xqdbg1uSnYv7DNPNPetC7U7lF5gQQghVo/5QJVDdPhWurk9YzowXBLWuW1kWk+zY29sTGhpKeHi4UXt4eDgdOnS47Xk//fQTTz31FD/++CP9+vUr6zArnKzcPP0SEd5uDjT2uyW52/aVYbvdaBmYLIQQ5qC1gXYvGPY3fVTuIQRb8fRzi0l2ACZMmMCCBQtYtGgRR48eZfz48URHRzNq1ChAvQU1fPhw/fE//fQTw4cP57PPPqNdu3ZcunSJS5cukZycbK63YHH2nEsiI1u999qlnrfxLcFr0WohQQBnT2jxhBkiFEIIAUDLoeCUP8Hm8K/qOoXlyLhnR5KdMjNo0CBmzpzJ1KlTadGiBZs3b2bVqlUEBqpde3FxcUY1d+bOnUtubi4vvvgifn5++sfYsWPN9RYszs23sLreegtrxxy1kBWoZcvtnMoxMiGEEEYc3OCeKYb9fyZCXk65vXyQl4u+c9/abmNpFMUMc9wsSEpKCh4eHiQnJ1vl+J3en2/m+OVUtBqIfPNeqrrkL9J6PQk+D4HsNLB1hPGHwaWQ+jtCCCHKj04HC++B2Eh1/96p0LH8/oDv9NF/XEi6jpuDLQem9CrWBCFzKcn3t0X17AjTunjtOscvpwLQPKCKIdEBWDdFTXQAWgyRREcIISyBVgv9PgPyk4yNH8LlI+X28jduZaVm5XIlzTzVnMuCJDtW7LZTzk+tN0w3t3OBTuPKNS4hhBBFqNESWo9Ut3MyYNlgyLhaLi9d76ZlIw5esJ7xr5LsWLFNhSU7mcnw5xjDQb3egyq1yjkyIYQQRbp3Kvg1V7eTzsGKJ8tl/E5Y7ar67Z1nyyfBKg+S7FipnDwdW04mAFDF2Y5m/lXUJ9a+CSmx6nZwNwh7xizxCSGEKIK9Mzz+I7jk/6F6djNs/qTMX7ZNkKGC/s4ziWX+euVFkh0rFRV9jdSsXAA61/PGRquBi1Gw9wf1AHs3GPCV1NURQghL5eEPg5aANn+Jn61fQsrFMn3Jai72NPB1A+BgbDKpmeU3G6wsSbJjpf47Fq/f7lrfW11YbvX/gPzJd90nye0rIYSwdLXaGcbv5F6HjdPL/CXbBqu1fnQK7DmfVOavVx4k2bFS649eBtSOm+4NvOHonxCdv3p8tTrQ+lkzRieEEKLYurwKDvlTq6OWlPlSEu2CDbeydljJrSxJdqxQdGIGJ+PVaeWtalXF00GB8LcNB/SaBrb2tzlbCCGERXHxNNTaUXSw/t0yfbk2QdX02zvPWMcgZUl2rNC6/F4dgN713dRpi0nn1IagrtCgr3kCE0IIUTrtRoObn7p9fBVc2FNmL+Xl6kDd/CnoB2OTScsf/1mRSbJjhdYfU5MdJzIZevo1OP2f+oSdC/T9SAYlCyFERWPvDF1fM+xv+rhMX65d/ridPJ3CnnMVv3dHkh0rk5KZo+92nOcyB+eL+eN07N1g2K/g08iM0QkhhCi1FkPB3V/dPrkGYveW2UsZj9uRZEdYmNWHLpGrU+isPUDnvF1qo4MHDP9DHdUvhBCiYrK1h87jDftlWHenbZB1DVKWZMeK5ObpmL3xNFp0/M92qeGJfp+Cf6j5AhNCCGEaLYeBWw11+/gqiNtfJi/j7eagXzrCGsbtSLJjRVbuvcDZhHQG2myikTZGbazREkIGmjcwIYQQpmHrAJ1u6t0pw7E7N25l5ekUdlfwcTuS7FiJtKxcPl17AmcyecV2heGJXu+rq+gKIYSwDq2Gg2t1dfvY33DpUJm8TPs61nMrS74FrcScjae5kprFW7Y/4Ku5pjY2vB9qdzRrXEIIIUzMzhE6jTPsby6b3p2b6+1U9EHKkuxYgdhr15kfcYb7tdsZbLtBbbRzVlfNFUIIYX1CnwIXH3X7yB9w+YjJX8LL1YH6vuq4nUMVfJ0sSXaswMerj+Gdd4kP7BYYGu/7BDzrmC8oIYQQZcfOyVBVGcpsZlb7m8bt7DlXcdfJkmSngtsbncS/+87ztd1XuGuuq40hA6HFEPMGJoQQomyFPQMu3ur24d8g8bTJX8Ja1smSZKcCy9MpvPX7Id60XUILbf4/8qq14f7PpUqyEEJYO3tndRkJABTYvdDkL9H2pmRnuyQ7whyW7jxPvUurGG4bDoBi4wCPLQZHdzNHJoQQolyEPgW2jup21BLITjfp5au52NOwuhugjttJqaDjdiTZqaAS0rJYtmYT028ap6Pp9xn4NTdjVEIIIcqVczVDLbWsZDjws8lfom3+rCydAgcvJJv8+uVBkp0KavqqYwzN/R0nTbba0HIYtBpm3qCEEEKUvzbPGrZ3zQdFMenlG9cw3C04cTnVpNcuL5LsVEC7zl5l/d6jPGwTAYDO3hV6f2DmqIQQQphFjRbg30bdjj8M57eZ9PL1fd3025LsiHKRmZPHG78eYLDNBhw16r1TbcthMk5HCCEqszbPGbZ3zzfppevdlOwcvyTJjigHX/93iugryQyzXQuAggbaPneHs4QQQli1xg8Yigwe/QtSLprs0q4OtvhXdQLgxOU0FBPfJisPkuxUIEfjUpiz6TS9tXuooVFLd2vq94FqwWaOTAghhFnZ2qszswB0uRD5nUkvf+NWVlpWLheTM0167fIgyU4FkadTeGPlARx0GYyx/c3wRLtR5gtKCCGE5Qh7GjQ26vaebyE322SXNhq3UwFvZUmyUwEoisJbfxzi8IVEZtl9QUNtjPqEb1MI6mre4IQQQlgG9xrQqL+6nR4PR/802aUbVHfVbx+vgIOUJdmxcIqi8MGqo6zYeYYP7RbQ1eaA+oRjFRi4UColCyGEMLh5oPKueSa7rPTsiDL1dfgxUrYtYoPDBAbabFYbbRxg8DLwbmDe4IQQQliWwA7g00TdjtkJx1aZ5LJ1vF3R5v9tfSJekh1hQkvW76HDlmF8ZDcff02C2qjRwsPzILC9eYMTQghheTQa6DTesP/XWEi/+zWtHO1sqO3lAsDJy2nk6SrWjCyLS3ZmzZpFUFAQjo6OhIaGEhERcdtj4+LieOKJJ2jQoAFarZZx48aVX6BlbOWa9XTZ9Dih2pOGxrr3wrP/QZMHzRaXEEIIC9d0INTvq26nx8M/401SVblB/q2srFwd0Vcz7vp65cmikp3ly5czbtw4Jk+eTFRUFJ07d6Zv375ER0cXenxWVhbe3t5MnjyZ5s2tY00oRVFY8nc492wbSi3tFQBS7X3g6dUw9Beo0dLMEQohhLBoGg30/wKcqqr7R/6Aw78VfU4xVOTighaV7MyYMYMRI0YwcuRIGjVqxMyZMwkICGD27NmFHl+7dm2++OILhg8fjoeHR7FeIysri5SUFKOHpcjTKbz7x0Hq75qMh0bNmuNd6uP64ka5bSWEEKL43Hyh3wzD/sYP77p3p0EFXjbCYpKd7OxsIiMj6dWrl1F7r1692LbNdOt8TJ8+HQ8PD/0jICDAZNe+GxnZuTz/wx6u715MG+1xAJKdAvB5+T80HjXNHJ0QQogKJ+RhqNVB3U44Dmc23NXlKvL0c4tJdhISEsjLy8PX19eo3dfXl0uXLpnsdSZNmkRycrL+ERMTY7Jrl1Z8SiaD5u5g39GT/M92qb7d49GvwcGtiDOFEEKIItxceHbHnLu6VKCnC/Y2atpQ0aafW0yyc4PmlroxiqIUaLsbDg4OuLu7Gz3M6cTlVB6atY2Dscn8z26p/vYVzQZBcDezxiaEEKKCa9APPPLvYJxcA4mnS30pOxstwd7qjKyzCelk5eaZIsJyYTHJjpeXFzY2NgV6ceLj4wv09liLLScTeGTWNmKvXaex5hwP22xRn3CsAr3eN2tsQgghrICNLbQeadjfOfeuLtegunq3IVencDYh/a6uVZ4sJtmxt7cnNDSU8PBwo/bw8HA6dOhgpqjKzs97Ynjq212kZuUC8K7rTSPlu74Ort5mikwIIYRVaTUcbNVVy9m3FDKTS32p+hV0RpbFJDsAEyZMYMGCBSxatIijR48yfvx4oqOjGTVKvec4adIkhg8fbnTOvn372LdvH2lpaVy5coV9+/Zx5MgRc4RfLIqi8Nna47z2ywFy84syjQqKp3XObvUAd38Ie8aMEQohhLAqztWg+SB1OzvtrlZEb1BBkx1bcwdws0GDBpGYmMjUqVOJi4sjJCSEVatWERgYCKhFBG+tudOypaHuTGRkJD/++COBgYGcO3euPEMvFkVRmPbPURZuOatve6p9IK9f/cZwULfXwc7RDNEJIYSwWu1fgsjvAQV2zIa2o8DWocSXuXEbCyrW9HONopigrGIFlpKSgoeHB8nJyWU+WPmztcf56r9TgFrz6a1+jXnGIxJWjlAPqFYHXtyl3mMVQgghTGnZEDj2t7o94GtoNazEl9DpFJpOWUN6dh7+VZ3Y8noPEwdZfCX5/rao21jW7JsNp/SJDsBHDzfjmcAE+ONFw0E9JkuiI4QQomx0HGfY3vYl6HQlvoRWq6F+fu/OhaTrpOWPO7V0kuyUg0VbzvLJmuP6/XcHNOGxunnw0+OQm6k2thgCTR42U4RCCCGsXkDrm4oMnoATq0t1mYpYSVmSnTL2485opv5tGDD9Rt+GPNncDZY+Chn5K5nX7gz3z1TvbQkhhBBlpdM4w/bGD0BX8lo5RuN2KsggZUl2ytBvUReY/PtB/f7YnvUY1c4XfnxUzaoBPOvBoB/A1t5MUQohhKg06t4LfvkLZ186CAeWl/gSN/fsHJNkp3JbdTCOV37er1937fkuwYzrXht+HgaxkWqja3UYutKwMq0QQghRlrRa6DXNsL/+PcjOKNElKuKMLEl2yoCiKPwWFUt+GR2Gtw/kjb4N0Wz5HE7/pzY6esCwX6FqoPkCFUIIUfkEdYH6fdXt1Iuw/esSne7p6oCXq3o3oqLU2pFkpwxoNBq+fqIlvZv48mioP1P6N0GTdA62zMg/wAYGLwffJmaNUwghRCV171T1uwhgy0xIvVyi02/07iSmZ5OQlmXi4ExPkp0y4mBrwzdPtOLDR5qh1QD/vm6YedXuBQhsb9b4hBBCVGLe9Q3V+nPSYUPJ1mNs4Guoa7PzzFVTRlYmJNkpQ7Y2Wmy0Gji+Sl1tFsDND7q9Yd7AhBBCiG5vgEN+0hL1A1wu/lJL3Rsa1m9cdTDO1JGZnCQ7ZS0nE1bflNz0fh8c3G5/vBBCCFEeXLyg8wR1W9HB2jeLfWr7YE+qOtsBsP7YZTKyLbu4oCQ7ZW3HLLiWv55XUFcpHCiEEMJytH0BPALU7dPr4dS6Yp1ma6OlT4gfAJk5OlYdvFRWEZqEJDtlKS0eIm4MStZCn+lSOFAIIYTlsHOEnu8Y9te/B8VcMnNgqL9++6dd0UUcaX6S7JSlDe9Ddv60vFbDZfaVEEIIyxPyCFRvqm7H7YOT4cU6rVWtKvoCg5Hnkyx6GrokO2Xl8mHYu1jdtneD7pPNG48QQghRGK0Wur5u2N/0YbF6dzQaDYPbBOj3Lbl3R5KdshL+tjrgC6DLK+DqY954hBBCiNtp0A98Q9Tt2Eh1/E4xPNTSHwdbNZX4de8FMnNKvtZWeZBkp6z0ng71ekOVWuoAMCGEEMJSabXQ5VXD/saPitW74+FsR79m6kDllMxci52GLslOWfGuD0N+hmc3qgPAhBBCCEvWaAB4N1K3L+yCHbOLddoTbWrpt5ftiimLyO6aJDtlzcXT3BEIIYQQd6bVwj1TDPtrJxvWcyxCaGBV6vm4ArDr3FVOxVveQGVJdoQQQgihatAHOk9UtxUdrHgaEk8XeYo6UNnQu/OTBfbuSLIjhBBCCIPukw2romdeg1+fA13RA48fblUT+/yByiv3XiA1M6eMgywZSXaEEEIIYaDVwsPzwLOuuh+7B3bNL/KUKs729GuqDlS+lpHDiO/3kGJBCY8kO0IIIYQw5ugOA7427K+falj66DbG9qxHlfz1snadvcrA2duIuZpRllEWmyQ7QgghhCgosD2EjVC3c9Lh7wlFTkev7eXC90+30Sc8Jy6n8dCsrURFJ5VHtEWSZEcIIYQQhbvnHXCroW6fCocTa4o8vHlAFX4b3ZEgLxcAEtKyGTx/B1tPJZR1pEWSZEcIIYQQhXP0gL4fGvbXv3vHwcpBXi78NroDbYOqAeqq6CO+323WhEeSHSGEEELcXqMBUDNU3Y4/Agd/ueMpVZztWTyiDfc08gXUhOf0lbSyjLJIkuwIIYQQ4vY0GuNigxumQW72HU9zsLVh1pBW3NvYlyn9GzO8fe0yC/FOJNkRQgghRNGCukCdHur2tWjYNbdYp9nbapk7NJSnOgaVYXB3JsmOEEIIIe6s59uG7XVT4MzGYp2m1WrKJJySkGRHCCGEEHdWoyW0e1Hd1uXC8uEQf8y8MRWTJDtCCCGEKJ5e7xmWkshKhh8egsO/F1l/xxJYXLIza9YsgoKCcHR0JDQ0lIiIiCKP37RpE6GhoTg6OhIcHMycOXPKKVIhhBCiktHawCMLoHozdT/1Iqx4Er7tq87Sykw2b3y3YWvuAG62fPlyxo0bx6xZs+jYsSNz586lb9++HDlyhFq1ahU4/uzZs9x33308++yzLFmyhK1btzJ69Gi8vb155JFHzPAOhBBCCCvn4ApDVqgLhJ7dpLZFb1cfWjvwawZVaoF7TbBzAlsHsHGAJg+q7WagURTL6Xtq27YtrVq1Yvbs2fq2Ro0a8eCDDzJ9+vQCx7/++uv8+eefHD16VN82atQo9u/fz/bt24v1mikpKXh4eJCcnIy7u/vdvwkhhBCiMlAUOLEa1r4FiSfvfPzwPyG4q8leviTf3xZzGys7O5vIyEh69epl1N6rVy+2bdtW6Dnbt28vcHzv3r3Zs2cPOTmFr7aalZVFSkqK0UMIIYQQJaTRQIO+MHoHPPkXtHkeqgTe/nhbx/KL7daXNtsr3yIhIYG8vDx8fX2N2n19fbl06VKh51y6dKnQ43Nzc0lISMDPz6/AOdOnT+fdd981XeBCCCFEZWZjq9bhCeoC930MuVmQfAFSL0FuJuRlq//1qme2EC0m2blBozGej68oSoG2Ox1fWPsNkyZNYsKECfr9lJQUAgICShuuEEIIIW5m6wCeddSHhbCYZMfLywsbG5sCvTjx8fEFem9uqF69eqHH29ra4unpWeg5Dg4OODg4mCZoIYQQQlg8ixmzY29vT2hoKOHh4Ubt4eHhdOjQodBz2rdvX+D4tWvXEhYWhp2dXZnFKoQQQoiKw2KSHYAJEyawYMECFi1axNGjRxk/fjzR0dGMGjUKUG9BDR8+XH/8qFGjOH/+PBMmTODo0aMsWrSIhQsXMnHiRHO9BSGEEEJYGIu5jQUwaNAgEhMTmTp1KnFxcYSEhLBq1SoCA9XR3XFxcURHR+uPDwoKYtWqVYwfP55vvvmGGjVq8OWXX0qNHSGEEELoWVSdHXOQOjtCCCFExVMh6+wIIYQQQpQFSXaEEEIIYdUk2RFCCCGEVZNkRwghhBBWTZIdIYQQQlg1SXaEEEIIYdUk2RFCCCGEVZNkRwghhBBWzaIqKJvDjZqKKSkpZo5ECCGEEMV143u7OLWRK32yk5qaCkBAQICZIxFCCCFESaWmpuLh4VHkMZV+uQidTsfFixdxc3NDo9GYOxyLlJKSQkBAADExMbKkhgWQz8OyyOdheeQzsSxl9XkoikJqaio1atRAqy16VE6l79nRarX4+/ubO4wKwd3dXX5xWBD5PCyLfB6WRz4Ty1IWn8edenRukAHKQgghhLBqkuwIIYQQwqpJsiPuyMHBgXfeeQcHBwdzhyKQz8PSyOdheeQzsSyW8HlU+gHKQgghhLBu0rMjhBBCCKsmyY4QQgghrJokO0IIIYSwapLsCCGEEMKqSbIjmD59OhqNhnHjxunbFEVhypQp1KhRAycnJ7p168bhw4eNzsvKymLMmDF4eXnh4uLCgAEDuHDhQjlHbz1iY2MZOnQonp6eODs706JFCyIjI/XPy2dSfnJzc3nzzTcJCgrCycmJ4OBgpk6dik6n0x8jn0fZ2bx5M/3796dGjRpoNBp+//13o+dN9bNPSkpi2LBheHh44OHhwbBhw7h27VoZv7uKqajPJCcnh9dff52mTZvi4uJCjRo1GD58OBcvXjS6hlk/E0VUart27VJq166tNGvWTBk7dqy+/cMPP1Tc3NyUlStXKgcPHlQGDRqk+Pn5KSkpKfpjRo0apdSsWVMJDw9X9u7dq3Tv3l1p3ry5kpuba4Z3UrFdvXpVCQwMVJ566ill586dytmzZ5V169Ypp06d0h8jn0n5mTZtmuLp6an8/fffytmzZ5UVK1Yorq6uysyZM/XHyOdRdlatWqVMnjxZWblypQIov/32m9HzpvrZ9+nTRwkJCVG2bdumbNu2TQkJCVHuv//+8nqbFUpRn8m1a9eUe+65R1m+fLly7NgxZfv27Urbtm2V0NBQo2uY8zORZKcSS01NVerVq6eEh4crXbt21Sc7Op1OqV69uvLhhx/qj83MzFQ8PDyUOXPmKIqi/uO2s7NTli1bpj8mNjZW0Wq1yurVq8v1fViD119/XenUqdNtn5fPpHz169dPeeaZZ4zaHn74YWXo0KGKosjnUZ5u/WI11c/+yJEjCqDs2LFDf8z27dsVQDl27FgZv6uKrbAE9Fa7du1SAOX8+fOKopj/M5HbWJXYiy++SL9+/bjnnnuM2s+ePculS5fo1auXvs3BwYGuXbuybds2ACIjI8nJyTE6pkaNGoSEhOiPEcX3559/EhYWxqOPPoqPjw8tW7Zk/vz5+uflMylfnTp1Yv369Zw4cQKA/fv3s2XLFu677z5APg9zMtXPfvv27Xh4eNC2bVv9Me3atcPDw0M+HxNITk5Go9FQpUoVwPyfSaVfCLSyWrZsGXv37mX37t0Fnrt06RIAvr6+Ru2+vr6cP39ef4y9vT1Vq1YtcMyN80XxnTlzhtmzZzNhwgT+97//sWvXLl5++WUcHBwYPny4fCbl7PXXXyc5OZmGDRtiY2NDXl4e77//PoMHDwbk/xFzMtXP/tKlS/j4+BS4vo+Pj3w+dykzM5M33niDJ554Qr/wp7k/E0l2KqGYmBjGjh3L2rVrcXR0vO1xGo3GaF9RlAJttyrOMaIgnU5HWFgYH3zwAQAtW7bk8OHDzJ49m+HDh+uPk8+kfCxfvpwlS5bw448/0qRJE/bt28e4ceOoUaMGTz75pP44+TzMxxQ/+8KOl8/n7uTk5PD444+j0+mYNWvWHY8vr89EbmNVQpGRkcTHxxMaGoqtrS22trZs2rSJL7/8EltbW/1fTLdm0vHx8frnqlevTnZ2NklJSbc9RhSfn58fjRs3Nmpr1KgR0dHRgPrzBvlMysurr77KG2+8weOPP07Tpk0ZNmwY48ePZ/r06YB8HuZkqp999erVuXz5coHrX7lyRT6fUsrJyeGxxx7j7NmzhIeH63t1wPyfiSQ7lVDPnj05ePAg+/bt0z/CwsIYMmQI+/btIzg4mOrVqxMeHq4/Jzs7m02bNtGhQwcAQkNDsbOzMzomLi6OQ4cO6Y8RxdexY0eOHz9u1HbixAkCAwMBCAoKks+kHGVkZKDVGv96tLGx0U89l8/DfEz1s2/fvj3Jycns2rVLf8zOnTtJTk6Wz6cUbiQ6J0+eZN26dXh6eho9b/bP5K6GNwurcfNsLEVRp3Z6eHgov/76q3Lw4EFl8ODBhU7t9Pf3V9atW6fs3btX6dGjh0yrLaVdu3Yptra2yvvvv6+cPHlSWbp0qeLs7KwsWbJEf4x8JuXnySefVGrWrKmfev7rr78qXl5eymuvvaY/Rj6PspOamqpERUUpUVFRCqDMmDFDiYqK0s/sMdXPvk+fPkqzZs2U7du3K9u3b1eaNm0qU89vo6jPJCcnRxkwYIDi7++v7Nu3T4mLi9M/srKy9Ncw52ciyY5QFKVgsqPT6ZR33nlHqV69uuLg4KB06dJFOXjwoNE5169fV1566SWlWrVqipOTk3L//fcr0dHR5Ry59fjrr7+UkJAQxcHBQWnYsKEyb948o+flMyk/KSkpytixY5VatWopjo6OSnBwsDJ58mSjX9zyeZSdDRs2KECBx5NPPqkoiul+9omJicqQIUMUNzc3xc3NTRkyZIiSlJRUTu+yYinqMzl79myhzwHKhg0b9Ncw52eiURRFubu+ISGEEEIIyyVjdoQQQghh1STZEUIIIYRVk2RHCCGEEFZNkh0hhBBCWDVJdoQQQghh1STZEUIIIYRVk2RHCCGEEFZNkh0hhBBCWDVJdoQQQghh1STZEUIIIYRVk2RHCFGuunXrxrhx48wdBmDaWN58800cHBx44okninV8YmIiPj4+nDt3ziSvX5SBAwcyY8aMMn8dISyVJDtCWJk5c+bg5uZGbm6uvi0tLQ07Ozs6d+5sdGxERAQajYYTJ06Ud5jlrqyTrNdee40ZM2bw008/cerUqTseP336dPr370/t2rXLLKYb3n77bd5//31SUlLK/LWEsESS7AhhZbp3705aWhp79uzRt0VERFC9enV2795NRkaGvn3jxo3UqFGD+vXrmyNUq+Lu7s4zzzyDVqvl4MGDRR57/fp1Fi5cyMiRI8sltmbNmlG7dm2WLl1aLq8nhKWRZEcIK9OgQQNq1KjBxo0b9W0bN27kgQceoE6dOmzbts2ovXv37gCsXr2aTp06UaVKFTw9Pbn//vs5ffq0/ti5c+dSs2ZNdDqd0esNGDCAJ598EgBFUfj4448JDg7GycmJ5s2b88svv9w21uIc361bN15++WVee+01qlWrRvXq1ZkyZYrRMampqQwZMgQXFxf8/Pz4/PPPjXpynnrqKTZt2sQXX3yBRqNBo9Hobx/pdLoir10Subm5ODs7c+jQoSKP+/fff7G1taV9+/Yleq/dunVjzJgxjBs3jqpVq+Lr68u8efNIT0/n6aefxs3NjTp16vDvv/8WeM0BAwbw008/lfq9CVGRSbIjhBXq1q0bGzZs0O9v2LCBbt260bVrV317dnY227dv1yc76enpTJgwgd27d7N+/Xq0Wi0PPfSQPrl59NFHSUhIMLpuUlISa9asYciQIYA6buXbb79l9uzZHD58mPHjxzN06FA2bdpUaJzFPf7777/HxcWFnTt38vHHHzN16lTCw8P1z0+YMIGtW7fy559/Eh4eTkREBHv37tU//8UXX9C+fXueffZZ4uLiiIuLIyAgoFjXLok333yTtLS0OyY7mzdvJiwsrNDn7hTP999/j5eXF7t27WLMmDG88MILPProo3To0IG9e/fSu3dvhg0bZtSDB9CmTRt27dpFVlZWqd6bEBWaIoSwOvPmzVNcXFyUnJwcJSUlRbG1tVUuX76sLFu2TOnQoYOiKIqyadMmBVBOnz5d6DXi4+MVQDl48KC+bcCAAcozzzyj3587d65SvXp1JTc3V0lLS1McHR2Vbdu2GV1nxIgRyuDBg/X7Xbt2VcaOHVui4zt16mR0TOvWrZXXX39dURRFSUlJUezs7JQVK1bon7927Zri7OysjB07tsDr3uxO1y6JPXv2KPb29kq/fv2Uxo0bF3nsAw88YPRzLG48tz6fm5uruLi4KMOGDdO3xcXFKYCyfft2o+vs379fAZRz586V+L0JUdHZmjfVEkKUhe7du5Oens7u3btJSkqifv36+Pj40LVrV4YNG0Z6ejobN26kVq1aBAcHA3D69GneeustduzYQUJCgr5HJzo6mpCQEACGDBnCc889x6xZs3BwcGDp0qU8/vjj2NjYcOTIETIzM7n33nuNYsnOzqZly5YFYizJ8c2aNTPa9/PzIz4+HoAzZ86Qk5NDmzZt9M97eHjQoEGDYv2sirp2cel0Op5//nleeukl2rZty5AhQ8jOzsbe3r7Q469fv46jo2Op4rn5eRsbGzw9PWnatKm+zdfXF6DAe3BycgIo0OMjRGUgyY4QVqhu3br4+/uzYcMGkpKS6Nq1KwDVq1cnKCiIrVu3smHDBnr06KE/p3///gQEBDB//nxq1KiBTqcjJCSE7Oxso2N0Oh3//PMPrVu3JiIiQj+l+UZy9M8//1CzZk2jeBwcHArEWJLj7ezsjPY1Go3+fEVR9G03u9F+J0Vdu7i++uorrly5wtSpU4mOjiY3N5fjx48bJSE38/LyIikpqVTxFPb8zW03fg63voerV68C4O3tXcx3JYT1kGRHCCvVvXt3Nm7cSFJSEq+++qq+vWvXrqxZs4YdO3bw9NNPA2rNl6NHjzJ37lz99PQtW7YUuKaTkxMPP/wwS5cu5dSpU9SvX5/Q0FAAGjdujIODA9HR0frkqiglPf526tSpg52dHbt27dKPw0lJSeHkyZNG17W3tycvL6/Ur3M7sbGxvPXWW/z000+4uLhQr149HBwcOHTo0G2TnZYtW7JkyRKTx1KUQ4cO4e/vj5eXV7m+rhCWQJIdIaxU9+7defHFF8nJyTH60u/atSsvvPACmZmZ+sHJVatWxdPTk3nz5uHn50d0dDRvvPFGodcdMmQI/fv35/DhwwwdOlTf7ubmxsSJExk/fjw6nY5OnTqRkpLCtm3bcHV11c/YKu3xt+Pm5saTTz7Jq6++SrVq1fDx8eGdd95Bq9Ua9fbUrl2bnTt3cu7cOVxdXalWrVqxf5ZFefnll+nbty/9+vUDwNbWlkaNGhU5SLl3795MmjSJpKQkqlatapI47iQiIoJevXqVy2sJYWlkNpYQVqp79+5cv36dunXr6sdxgJrspKamUqdOHX1PiFarZdmyZURGRhISEsL48eP55JNPCr1ujx49qFatGsePHy9QLfi9997j7bffZvr06TRq1IjevXvz119/ERQUVOi1Snr87cyYMYP27dtz//33c88999CxY0caNWpkNC5m4sSJ2NjY0LhxY7y9vYmOji7Wtb/77rsCt8hu+Pvvv/nvv//44osvjNqbNm1aZLLTtGlTwsLC+Pnnn4sVw93KzMzkt99+49lnny2X1xPC0miU4t7YFkKICiI9PZ2aNWvy2WefMWLEiLu61pQpU9i4caNR3SJTWLVqFRMnTuTQoUNotWX7d+c333zDH3/8wdq1a8v0dYSwVHIbSwhR4UVFRXHs2DHatGlDcnIyU6dOBeCBBx6462uvWbOmQM+NKdx3332cPHmS2NhYfQ9bWbGzs+Orr74q09cQwpJJz44QosKLiopi5MiRHD9+HHt7e0JDQ5kxY8ZtBwgLISoXSXaEEEIIYdVkgLIQQgghrJokO0IIIYSwapLsCCGEEMKqSbIjhBBCCKsmyY4QQgghrJokO0IIIYSwapLsCCGEEMKqSbIjhBBCCKsmyY4QQgghrJokO0IIIYSwav8HludjIEWz4PoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "SR_dut=pd.Series(index=QE_dut.index,\n", " data=[QE_dut.loc[i,'QE']*e*i*0.000000001/(h*c) for i in QE_dut.index])\n", "SR_cal=pd.Series(index=QE_cal.index,\n", " data=[QE_cal.loc[i,'QE']*e*i*0.000000001/(h*c) for i in QE_cal.index])\n", "plt.plot(SR_dut, \n", " linewidth=2)\n", "plt.plot(SR_cal, \n", " linewidth=2)\n", "plt.ylabel('Spectral response, $SR$')\n", "plt.xlabel(r'Wavelength, $\\lambda$ (nm)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For every spectra and solar cell, we interpolate the spectrum at those datapoints included in the SR, and integrate to obtain the short-circuit current density using Eq. 3.5.\n", "\n", "$J_{L, spectrum, cell}=\\int SR(\\lambda) \\cdot G(\\lambda) \\ d\\lambda$\n" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "spectra=xe_arc['Xe arc lamp (W*m-2*nm-1)']\n", "spectra_interpolated=np.interp(SR_dut.index, spectra.index, spectra.values)\n", "J_sim_dut = np.trapz([x*y for x,y in zip(SR_dut, spectra_interpolated)], x=SR_dut.index)*1000/10000 # A-> mA ; m2 -> cm2\n", "spectra_interpolated=np.interp(SR_cal.index, spectra.index, spectra.values)\n", "J_sim_cal = np.trapz([x*y for x,y in zip(SR_cal, spectra_interpolated)], x=SR_cal.index)*1000/10000 # A-> mA ; m2 -> cm2\n", "\n", "spectra=reference['AM1.5G']\n", "spectra_interpolated=np.interp(SR_dut.index, spectra.index, spectra.values)\n", "J_ref_dut =np.trapz([x*y for x,y in zip(SR_dut, spectra_interpolated)], x=SR_dut.index)*1000/10000 # A-> mA ; m2 -> cm2\n", "\n", "spectra_interpolated=np.interp(SR_cal.index, spectra.index, spectra.values)\n", "J_ref_cal =np.trapz([x*y for x,y in zip(SR_cal, spectra_interpolated)], x=SR_cal.index)*1000/10000 # A-> mA ; m2 -> cm2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We calculate the Spectral Mismatch Factor $M_f$ using Eq. 12.3\n", "\n", "$M_f=\\frac{J_{L, sim, dut}}{J_{L, ref, dut}}\\frac{J_{L, ref, cal}}{J_{L, sim, cal}}$\n" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Spectral Mismatch Factor = 1.043\n" ] } ], "source": [ "M_f=J_sim_dut/J_ref_dut*J_ref_cal/J_sim_cal\n", "print('Spectral Mismatch Factor = ' + str(M_f.round(3)))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 4 }