{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 12.1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Fundamentals of Solar Cells and Photovoltaic Systems Engineering**\n", "\n", "**Solutions Manual - Chapter 12**\n", "\n", "**Problem 12.1**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**In this problem, we will review the method to extract the main parameters in the I-V curve presented in Chapter 4. Let us assume that we have measured the dark I-V curve of a 10 cm$^2$ solar cell at 25 $^{\\circ}$C. The tabulated data is provided in this book’s online repository. The series resistance $R_s$ can be assumed to be zero so the dark I-V curve equation is:**\n", "\n", "$I = I_0(e^{(qV/nkT)}-1)+ \\frac{V}{R_p}$\n", "\n", "**Estimate the reverse saturation current $I_0$, the diode ideality factor $n$, and discuss the potential effect of the parallel resistance $R_p$**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use the package [pandas](https://pandas.pydata.org/) to handle the data and [matplotlib.pyplot](https://matplotlib.org/stable/index.html) to plot the results." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import math" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by importing the data from the dark I-V curves." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | V (V) | \n", "I (A) | \n", "
---|---|---|
0 | \n", "0.1598 | \n", "0.000003 | \n", "
1 | \n", "0.2239 | \n", "0.000004 | \n", "
2 | \n", "0.2657 | \n", "0.000006 | \n", "
3 | \n", "0.3099 | \n", "0.000008 | \n", "
4 | \n", "0.3568 | \n", "0.000011 | \n", "