{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 3.7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Fundamentals of Solar Cells and Photovoltaic Systems Engineering**\n", "\n", "**Solutions Manual - Chapter 3**\n", "\n", "**Problem 3.7**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Let us consider $P_{max} \\approx J_{ideal} · V_{max} · 0.85$ as a rough approximation of the maximum power density produced by an ideal solar cell of bandgap $E_g$. Here, the factor 0.85 approximates the fill factor, which will be introduced in Chapter 4. $J_ideal$ is the cell’s ideal photocurrent density (see Box 3.2) and $V_{max} \\approx E_g · 0.75$ (in volts) is an approximated value of the maximum achievable voltage. Calculate the approximate maximum efficiency $η_{max}$ of a solar cell with a bandgap of 0.2 eV, 0.6 eV, 1.0 eV, 1.4 eV, 1.8 eV, 2.2 eV, and 2.6 eV; when it is illuminated with the reference solar spectrum AM1.5G and discuss the results based on Fig. 3.3.**\n", "\n", "**The spectrum AM1.5G can be found in the file “Reference_spectrum_ASTM-G173-03.csv” in the online repository of the book. The actual solar-cell efficiency limit is described in the Advanced Topic of Chapter 6.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use the package [pandas](https://pandas.pydata.org/) to handle the data and [matplotlib.pyplot](https://matplotlib.org/stable/index.html) to plot the results" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by importing the data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | AM0 | \n", "AM1.5G | \n", "AM1.5D | \n", "
---|---|---|---|
Wvlgth nm | \n", "Etr W*m-2*nm-1 | \n", "Global tilt W*m-2*nm-1 | \n", "Direct+circumsolar W*m-2*nm-1 | \n", "
280 | \n", "8.20E-02 | \n", "4.73E-23 | \n", "2.54E-26 | \n", "
280.5 | \n", "9.90E-02 | \n", "1.23E-21 | \n", "1.09E-24 | \n", "
281 | \n", "1.50E-01 | \n", "5.69E-21 | \n", "6.13E-24 | \n", "
281.5 | \n", "2.12E-01 | \n", "1.57E-19 | \n", "2.75E-22 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "
3980 | \n", "8.84E-03 | \n", "7.39E-03 | \n", "7.40E-03 | \n", "
3985 | \n", "8.80E-03 | \n", "7.43E-03 | \n", "7.45E-03 | \n", "
3990 | \n", "8.78E-03 | \n", "7.37E-03 | \n", "7.39E-03 | \n", "
3995 | \n", "8.70E-03 | \n", "7.21E-03 | \n", "7.23E-03 | \n", "
4000 | \n", "8.68E-03 | \n", "7.10E-03 | \n", "7.12E-03 | \n", "
2003 rows × 3 columns
\n", "\n", " | gap nm | \n", "
---|---|
gap eV | \n", "\n", " |
0.2 | \n", "6200.0 | \n", "
0.6 | \n", "2066.7 | \n", "
1.0 | \n", "1240.0 | \n", "
1.4 | \n", "885.7 | \n", "
1.8 | \n", "688.9 | \n", "
2.2 | \n", "563.6 | \n", "
2.6 | \n", "476.9 | \n", "